On finite pseudorandom binary sequences: functions from a Hardy field

被引:0
|
作者
Madritsch, M. G. [1 ]
Rivat, J. [2 ]
Tichy, R. F. [3 ]
机构
[1] Univ Lorraine, CNRS, IECL, F-54000 Nancy, France
[2] Univ Aix Marseille, Inst Univ France, Inst Math Marseille, CNRS UMR 7373, 163, Ave Luminy, Case 907, F-13288 Marseille 9, France
[3] Graz Univ Technol, Inst Anal & Number Theory, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
pseudorandom; binary sequence; Hardy field; well-distribution; correlation; UNIFORM-DISTRIBUTION;
D O I
10.1007/s10474-024-01469-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a construction of binary pseudorandom sequences based on Hardy fields H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} as considered by Boshernitzan. In particular we give upper bounds for the well distribution measure and the correlation measure defined by Mauduit and S & aacute;rk & ouml;zy. Finally we show that the correlation measure of order s is small only if s is small compared to the "growth exponent" of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}.
引用
收藏
页码:121 / 137
页数:17
相关论文
共 50 条
  • [1] On finite pseudorandom binary sequences, VI, (On (nkα) sequences)
    Mauduit, C
    Sárközy, A
    MONATSHEFTE FUR MATHEMATIK, 2000, 130 (04): : 281 - 298
  • [2] On finite pseudorandom binary sequences VII:: The measures of pseudorandomness
    Cassaigne, J
    Mauduit, C
    Sárközy, A
    ACTA ARITHMETICA, 2002, 103 (02) : 97 - 118
  • [3] On pseudorandom binary sequences constructed by using finite fields
    Richárd Sebők
    Periodica Mathematica Hungarica, 2015, 71 : 210 - 223
  • [4] On pseudorandom binary sequences constructed by using finite fields
    Sebok, Richard
    PERIODICA MATHEMATICA HUNGARICA, 2015, 71 (02) : 210 - 223
  • [5] On finite pseudorandom binary sequences III:: The Liouville function, I
    Cassaigne, J
    Ferenczi, S
    Mauduit, C
    Rivat, J
    Sárközy, A
    ACTA ARITHMETICA, 1999, 87 (04) : 367 - 390
  • [6] On finite pseudorandom binary sequences IV:: The Liouville function, II
    Cassaigne, J
    Ferenczi, S
    Mauduit, C
    Rivat, J
    Sárközy, A
    ACTA ARITHMETICA, 2000, 95 (04) : 343 - 359
  • [7] On finite pseudorandom binary sequences, V.: On (nα) and (n2α) sequences
    Mauduit, C
    Sárközy, A
    MONATSHEFTE FUR MATHEMATIK, 2000, 129 (03): : 197 - 216
  • [8] On Finite Pseudorandom Binary Sequences, V.On (nα) and (n2α) Sequences
    Christian Mauduit
    András Sárközy
    Monatshefte für Mathematik, 2000, 129 : 197 - 216
  • [9] Concatenation of pseudorandom binary sequences
    Gyarmati, Katalin
    PERIODICA MATHEMATICA HUNGARICA, 2009, 58 (01) : 99 - 120
  • [10] Pseudorandom sequences of binary vectors
    Niederreiter, Harald
    Rivat, Joel
    Sarkozy, Andras
    ACTA ARITHMETICA, 2008, 133 (02) : 109 - 125