Age of Information Based Client Selection for Wireless Federated Learning With Diversified Learning Capabilities

被引:0
|
作者
Dong, Liran [1 ,2 ,3 ]
Zhou, Yiqing [1 ,2 ,3 ]
Liu, Ling [1 ,2 ,3 ]
Qi, Yanli [1 ,2 ,3 ]
Zhang, Yu [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
[2] Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Training; Computational modeling; Servers; Data models; Wireless communication; Mobile computing; Accuracy; Federated learning (FL); age of information (AoI); client selection; fairness scheduling; COMMUNICATION; CONVERGENCE; DEVICES; DESIGN;
D O I
10.1109/TMC.2024.3450549
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) empowers wireless intelligent applications, by leveraging distributed data of edge clients for training without compromising privacy. Client selection is inevitable in FL, since clients have diversified learning capabilities arising from heterogeneous computing and communication resources. Existing methods like fair-selection and dropping-straggler are either inefficient or unfair (resulting in a less effective trained model). Therefore, we propose FedAoI, an Age-of-Information (AoI) based client selection policy. FedAoI ensures fairness by allowing all clients, including stragglers, to submit their model updates while maintaining high training efficiency by keeping round completion times short. This trade-off is achieved by minimizing Peak-AoI (PAoI), the interval between a client's consecutive participations. An optimization problem is formulated by minimizing the Expected-Weighted-Sum-of-PAoI. This NP-hard problem is addressed with a two-step sub-optimal algorithm, PriorS. It first calculates client priority in a round using Lyapunov optimization and then selects the highest-priority clients through G-FPFC (Greedy minimization of the round weighted-sum-of-PAoI with First-Priority-First-Considered). Simulation results demonstrate that, compared to fair-selection, FedAoI improves average efficiency by 83.8% and achieves an average model accuracy of 97.3% (or at the cost of averaging 2.7% degradation in model accuracy). Compared to dropping-straggler, FedAoI reduces the average model accuracy degradation from 9.5% to 2.7%.
引用
收藏
页码:14934 / 14945
页数:12
相关论文
共 50 条
  • [41] Learning-based client selection for multiple federated learning services with constrained monetary budgets
    Cheng, Zhipeng
    Fan, Xuwei
    Chen, Ning
    Liwang, Minghui
    Huang, Lianfen
    Wang, Xianbin
    ICT EXPRESS, 2023, 9 (06): : 1059 - 1064
  • [42] An Incentive Auction for Heterogeneous Client Selection in Federated Learning
    Pang, Jinlong
    Yu, Jieling
    Zhou, Ruiting
    Lui, John C. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 5733 - 5750
  • [43] A comprehensive survey on client selection strategies in federated learning
    Li, Jian
    Chen, Tongbao
    Teng, Shaohua
    COMPUTER NETWORKS, 2024, 251
  • [44] Client Selection in Federated Learning under Imperfections in Environment
    Rai, Sumit
    Kumari, Arti
    Prasad, Dilip K.
    AI, 2022, 3 (01) : 124 - 145
  • [45] Compressed Client Selection for Efficient Communication in Federated Learning
    Mohamed, Aissa Hadj
    Assumpcao, Nicolas R. G.
    Astudillo, Carlos A.
    de Souza, Allan M.
    Bittencourt, Luiz F.
    Villas, Leandro A.
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,
  • [46] Incentive Mechanism for Federated Learning With Random Client Selection
    Wu, Hongyi
    Tang, Xiaoying
    Zhang, Ying-Jun Angela
    Gao, Lin
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1922 - 1933
  • [47] Stochastic Client Selection for Federated Learning With Volatile Clients
    Huang, Tiansheng
    Lin, Weiwei
    Shen, Li
    Li, Keqin
    Zomaya, Albert Y.
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20) : 20055 - 20070
  • [48] A Systematic Literature Review on Client Selection in Federated Learning
    Smestad, Carl
    Li, Jingyue
    27TH INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2023, 2023, : 2 - 11
  • [49] Client Selection for Asynchronous Federated Learning with Fairness Consideration
    Zhu, Hongbin
    Yang, Miao
    Kuang, Junqian
    Qian, Hua
    Zhou, Yong
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 800 - 805
  • [50] Towards Understanding Biased Client Selection in Federated Learning
    Cho, Yae Jee
    Wang, Jianyu
    Joshi, Gauri
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151