Age of Information Based Client Selection for Wireless Federated Learning With Diversified Learning Capabilities

被引:0
|
作者
Dong, Liran [1 ,2 ,3 ]
Zhou, Yiqing [1 ,2 ,3 ]
Liu, Ling [1 ,2 ,3 ]
Qi, Yanli [1 ,2 ,3 ]
Zhang, Yu [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
[2] Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Training; Computational modeling; Servers; Data models; Wireless communication; Mobile computing; Accuracy; Federated learning (FL); age of information (AoI); client selection; fairness scheduling; COMMUNICATION; CONVERGENCE; DEVICES; DESIGN;
D O I
10.1109/TMC.2024.3450549
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) empowers wireless intelligent applications, by leveraging distributed data of edge clients for training without compromising privacy. Client selection is inevitable in FL, since clients have diversified learning capabilities arising from heterogeneous computing and communication resources. Existing methods like fair-selection and dropping-straggler are either inefficient or unfair (resulting in a less effective trained model). Therefore, we propose FedAoI, an Age-of-Information (AoI) based client selection policy. FedAoI ensures fairness by allowing all clients, including stragglers, to submit their model updates while maintaining high training efficiency by keeping round completion times short. This trade-off is achieved by minimizing Peak-AoI (PAoI), the interval between a client's consecutive participations. An optimization problem is formulated by minimizing the Expected-Weighted-Sum-of-PAoI. This NP-hard problem is addressed with a two-step sub-optimal algorithm, PriorS. It first calculates client priority in a round using Lyapunov optimization and then selects the highest-priority clients through G-FPFC (Greedy minimization of the round weighted-sum-of-PAoI with First-Priority-First-Considered). Simulation results demonstrate that, compared to fair-selection, FedAoI improves average efficiency by 83.8% and achieves an average model accuracy of 97.3% (or at the cost of averaging 2.7% degradation in model accuracy). Compared to dropping-straggler, FedAoI reduces the average model accuracy degradation from 9.5% to 2.7%.
引用
收藏
页码:14934 / 14945
页数:12
相关论文
共 50 条
  • [11] Client Selection in Hierarchical Federated Learning
    Trindade, Silvana
    da Fonseca, Nelson L. S.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28480 - 28495
  • [12] Client Selection for Federated Bayesian Learning
    Yang, Jiarong
    Liu, Yuan
    Kassab, Rahif
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 915 - 928
  • [13] HFSL: heterogeneity split federated learning based on client computing capabilities
    Wu, Nengwu
    Zhao, Wenjie
    Chen, Yuxiang
    Xiao, Jiahong
    Wang, Jin
    Liang, Wei
    Li, Kuan-Ching
    Sukhija, Nitin
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [14] Value of Information: A Comprehensive Metric for Client Selection in Federated Edge Learning
    Zou, Yifei
    Shen, Shikun
    Xiao, Mengbai
    Li, Peng
    Yu, Dongxiao
    Cheng, Xiuzhen
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (04) : 1152 - 1164
  • [15] A Secure and Fair Client Selection Based on DDPG for Federated Learning
    Wan, Tao
    Feng, Shun
    Liao, Weichuan
    Jiang, Nan
    Zhou, Jie
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [16] FedDCS: Federated Learning Framework based on Dynamic Client Selection
    Zou, Shutong
    Xiao, Mingjun
    Xu, Yin
    An, Baoyi
    Zheng, Jun
    2021 IEEE 18TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2021), 2021, : 627 - 632
  • [17] Client Selection Mechanism for Federated Learning Based on Class Imbalance
    Zhang, Linlin
    Lin, Congjie
    Bie, Zhangshuai
    Li, Shuo
    Bi, Xuehua
    Zhao, Kai
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 266 - 278
  • [18] Optimal Client Selection of Federated Learning Based on Compressed Sensing
    Li, Qing
    Lyu, Shanxiang
    Wen, Jinming
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1679 - 1694
  • [19] Federated learning client selection algorithm based on gradient similarity
    Hu, Lingxi
    Hu, Yuanyuan
    Jiang, Linhua
    Long, Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [20] Auction-based client selection for online Federated Learning
    Guo, Juncai
    Su, Lina
    Liu, Jin
    Ding, Jianli
    Liu, Xiao
    Huang, Bo
    Li, Li
    INFORMATION FUSION, 2024, 112