Complexity measures in trees: a comparative investigation of Szeged and Wiener indices

被引:0
|
作者
Ghorbani, Modjtaba [1 ]
Vaziri, Zahra [1 ]
Dehmer, Matthias [2 ,3 ,4 ,5 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Fac Sci, Dept Math, Tehran 16785163, Iran
[2] Swiss Distance Univ Appl Sci, Dept Comp Sci, CH-3900 Brig, Switzerland
[3] Tyrolean Private Univ UMIT, Dept Biomed Comp Sci & Mechatron, TIROL, A-6060 Hall In Tirol, Austria
[4] Nankai Univ, Coll Artificial Intelligence, Tianjin 300071, Peoples R China
[5] AKAD Univ, Sch Engn & Technol, Heilbronner Str 86, D-70191 Stuttgart, Germany
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2025年 / 44卷 / 04期
关键词
Szeged complexity; Wiener complexity; Tree; DIMENSION; DISTANCE; GRAPHS;
D O I
10.1007/s40314-025-03159-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of graph complexity has led to a deeper understanding of the structures of graphs. This paper presents new findings on the Szeged complexity of graphs. Specifically, we prove that for bipartite graphs on n vertices, the upper bound of Szeged complexity is & LeftFloor;n2 & RightFloor;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{n}{2} \rfloor $$\end{document}. Moreover, we establish that the lower bound of Szeged complexity of a tree T is the radius of T. Furthermore, we characterize trees with Szeged complexity three and determine their Wiener complexity.
引用
收藏
页数:10
相关论文
共 50 条