Complexity measures in trees: a comparative investigation of Szeged and Wiener indices

被引:0
|
作者
Ghorbani, Modjtaba [1 ]
Vaziri, Zahra [1 ]
Dehmer, Matthias [2 ,3 ,4 ,5 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Fac Sci, Dept Math, Tehran 16785163, Iran
[2] Swiss Distance Univ Appl Sci, Dept Comp Sci, CH-3900 Brig, Switzerland
[3] Tyrolean Private Univ UMIT, Dept Biomed Comp Sci & Mechatron, TIROL, A-6060 Hall In Tirol, Austria
[4] Nankai Univ, Coll Artificial Intelligence, Tianjin 300071, Peoples R China
[5] AKAD Univ, Sch Engn & Technol, Heilbronner Str 86, D-70191 Stuttgart, Germany
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2025年 / 44卷 / 04期
关键词
Szeged complexity; Wiener complexity; Tree; DIMENSION; DISTANCE; GRAPHS;
D O I
10.1007/s40314-025-03159-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of graph complexity has led to a deeper understanding of the structures of graphs. This paper presents new findings on the Szeged complexity of graphs. Specifically, we prove that for bipartite graphs on n vertices, the upper bound of Szeged complexity is & LeftFloor;n2 & RightFloor;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{n}{2} \rfloor $$\end{document}. Moreover, we establish that the lower bound of Szeged complexity of a tree T is the radius of T. Furthermore, we characterize trees with Szeged complexity three and determine their Wiener complexity.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] All but 49 numbers are Wiener indices of trees
    Wang, Hua
    Yu, Guang
    ACTA APPLICANDAE MATHEMATICAE, 2006, 92 (01) : 15 - 20
  • [32] All but 49 Numbers are Wiener Indices of Trees
    Hua Wang
    Guang Yu
    Acta Applicandae Mathematica, 2006, 92 : 15 - 20
  • [33] Novel application of Wiener vis-à-vis Szeged indices: Antitubercular activities of quinolones
    Agrawal V.K.
    Bano S.
    Mathur K.C.
    Khadikar P.V.
    Journal of Chemical Sciences, 2000, 112 (2) : 137 - 146
  • [34] Novel application of Wiener vis-a-vis Szeged indices: Antitubercular activities of quinolones
    Agrawal, VK
    Bano, S
    Mathur, KC
    Khadikar, P
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 2000, 112 (02): : 137 - 146
  • [35] The nine smallest hyper-Wiener indices of trees and the eight smallest hyper-Wiener (Wiener) indices of unicyclic graphs
    Liu, Muhuo
    Liu, Bolian
    UTILITAS MATHEMATICA, 2014, 95 : 129 - 139
  • [36] On the variable Wiener indices of trees with given maximum degree
    Liu, Muhuo
    Liu, Bolian
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1651 - 1659
  • [37] Ordering trees with given matching number by their Wiener indices
    Tan S.-W.
    Wei N.-N.
    Wang Q.-L.
    Wang D.-F.
    Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 309 - 327
  • [38] Wiener Odd and Even Indices on BC-Trees
    Yang, Yu
    Zhou, Liang
    Liu, Hongbo
    Abraham, Ajith
    2013 THIRD WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES (WICT), 2013, : 208 - 213
  • [39] Partitioning of Wiener-type indices, especially for trees
    Klein, DJ
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2003, 42 (06): : 1264 - 1269
  • [40] Ordering trees having small reverse Wiener indices
    Xing, Rundan
    Zhou, Bo
    FILOMAT, 2012, 26 (04) : 637 - 648