Explicit Formulas for Probabilistic Multi-Poly-Bernoulli Polynomials and Numbers

被引:9
|
作者
Kim, T. [1 ]
Kim, D. S. [2 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
D O I
10.1134/S1061920824030087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to study probabilistic Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} and probabilistic multi-poly-Bernoulli polynomials associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document}. They are respectively probabilistic extensions of Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and multi-poly-Bernoulli polynomials. We find explicit expressions, certain related identities and some properties for them. In addition, we treat the special cases of Poisson, gamma and Bernoulli random variables. DOI 10.1134/S1061920824030087Abstract Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to study probabilistic Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} and probabilistic multi-poly-Bernoulli polynomials associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document}. They are respectively probabilistic extensions of Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and multi-poly-Bernoulli polynomials. We find explicit expressions, certain related identities and some properties for them. In addition, we treat the special cases of Poisson, gamma and Bernoulli random variables. DOI 10.1134/S1061920824030087
引用
收藏
页码:450 / 460
页数:11
相关论文
共 50 条
  • [31] Explicit Formulas Associated with Some Families of Generalized Bernoulli and Euler Polynomials
    Boutiche, M. A.
    Rahmani, M.
    Srivastava, H. M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [32] Probabilistic Multiple Poly Bernoulli Polynomials of the Second Kind
    Lee, Si Hyeon
    Chen, Li
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [33] Probabilistic Type 2 Poly-Bernoulli Polynomials
    Lee, Si Hyeon
    Chen, Li
    Kim, Wonjoo
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 2336 - 2348
  • [34] A note on degenerate poly-Bernoulli numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2015
  • [35] A note on degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [36] On Generalized q-Poly-Bernoulli Numbers and Polynomials
    Bilgic, Secil
    Kurt, Veli
    FILOMAT, 2020, 34 (02) : 515 - 520
  • [37] Poly-Bernoulli numbers and polynomials with a q parameter
    Cenkci, Mehmet
    Komatsu, Takao
    JOURNAL OF NUMBER THEORY, 2015, 152 : 38 - 54
  • [38] Fully degenerate poly-Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Seo, Jong-Jin
    OPEN MATHEMATICS, 2016, 14 : 545 - 556
  • [39] Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind
    Qi, Feng
    FILOMAT, 2014, 28 (02) : 319 - 327