Explicit Formulas for Probabilistic Multi-Poly-Bernoulli Polynomials and Numbers

被引:9
|
作者
Kim, T. [1 ]
Kim, D. S. [2 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
D O I
10.1134/S1061920824030087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to study probabilistic Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} and probabilistic multi-poly-Bernoulli polynomials associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document}. They are respectively probabilistic extensions of Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and multi-poly-Bernoulli polynomials. We find explicit expressions, certain related identities and some properties for them. In addition, we treat the special cases of Poisson, gamma and Bernoulli random variables. DOI 10.1134/S1061920824030087Abstract Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to study probabilistic Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} and probabilistic multi-poly-Bernoulli polynomials associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document}. They are respectively probabilistic extensions of Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and multi-poly-Bernoulli polynomials. We find explicit expressions, certain related identities and some properties for them. In addition, we treat the special cases of Poisson, gamma and Bernoulli random variables. DOI 10.1134/S1061920824030087
引用
收藏
页码:450 / 460
页数:11
相关论文
共 50 条
  • [21] Some Explicit Formulas of Hurwitz Lerch type Poly-Cauchy Polynomials and Poly-Bernoulli Polynomials
    Lacpao, Noel B.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (03): : 1747 - 1761
  • [22] Explicit values of Bernoulli polynomials at rational numbers
    Munkel, Florian
    Pehlivan, Lerna
    Williams, Kenneth S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 548 (02)
  • [23] MULTIPLICATION THEOREMS FOR BERNOULLI POLYNOMIALS AND EXPLICIT REPRESENTATIONS OF BERNOULLI NUMBERS
    DILCHER, K
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1989, 59 : 143 - 156
  • [24] Probabilistic poly-Bernoulli numbers
    Liu, Wencong
    Ma, Yuankui
    Kim, Taekyun
    Kim, Dae San
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 840 - 856
  • [25] Explicit formulae for sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials
    Ken Kamano
    Takao Komatsu
    The Ramanujan Journal, 2014, 33 : 301 - 313
  • [26] Explicit formulae for sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials
    Kamano, Ken
    Komatsu, Takao
    RAMANUJAN JOURNAL, 2014, 33 (02): : 301 - 313
  • [27] Two explicit formulas for degenerate Peters numbers and polynomials
    Li, Yue-Wu
    Dagli, Muhammet Cihat
    Qi, Feng
    DISCRETE MATHEMATICS LETTERS, 2022, 8 : 1 - 5
  • [28] ON MULTI POLY-BERNOULLI POLYNOMIALS
    Corcino, Cristina B.
    Corcino, Roberto B.
    Komatsu, Takao
    Jolany, Hassan
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (02): : 21 - 34
  • [29] Recursion formulas for poly-Bernoulli numbers and their applications
    Ohno, Yasuo
    Sasaki, Yoshitaka
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (01) : 175 - 189
  • [30] Explicit Formulas Associated with Some Families of Generalized Bernoulli and Euler Polynomials
    M. A. Boutiche
    M. Rahmani
    H. M. Srivastava
    Mediterranean Journal of Mathematics, 2017, 14