Spectral analysis of operator matrices: limit point insights

被引:0
|
作者
Aymen Bahloul [1 ]
机构
[1] University of Sfax,Department of Mathematics, Faculty of Sciences of Sfax
关键词
Local spectral theory; Descent spectrum; Upper triangular operator matrices; Banach spaces; Limit points; 47A08; 47A10; 47A11;
D O I
10.1007/s11565-024-00573-x
中图分类号
学科分类号
摘要
This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices, denoted by T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document}, on Banach spaces. We rigorously prove that transitioning from the accumulation set of the diagonal descent spectrum, denoted by Accσd(Tdiag)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hbox {Acc} \sigma _{\textrm{d}}({\mathcal {T}}_\textbf{diag})$$\end{document}, to that of the complete descent spectrum, Accσd(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hbox {Acc} \sigma _{\textrm{d}}({\mathcal {T}})$$\end{document}, involves removing specific subsets within Accσd(A1)∩Accσa(A2)∩Accσa(A3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hbox {Acc} \sigma _{\textrm{d}}(A_1) \cap \hbox {Acc} \sigma _{\textrm{a}}(A_2) \cap \hbox {Acc} \sigma _{\textrm{a}}(A_3)$$\end{document}. Additionally, we present sufficient conditions that ensure the limit points of the descent spectrum of the operator matrix encompass the combined limit points of its diagonal entry spectra. This significantly addresses a longstanding question posed by Campbell (Linear Multilinear Algebra 14:195–198, 1983) regarding the limit points for the descent spectrum of the last 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \times 3$$\end{document} operator matrix form. Specifically, Campbell inquired about developing new methods to analyze the spectral properties of such matrices without resorting to partitioning their entries, a challenge that has remained unresolved for decades. Our findings provide a comprehensive solution, illustrating that a deeper understanding of the spectral behavior can be achieved by considering the entire matrix structure collectively.
引用
收藏
相关论文
共 50 条
  • [1] Essential point spectra of operator matrices trough local spectral theory
    Djordjevic, S. V.
    Zguitti, H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) : 285 - 291
  • [2] Similarity techniques in the spectral analysis of perturbed operator matrices
    Baskakov, Anatoly G.
    Krishtal, Ilya A.
    Uskova, Natalia B.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 930 - 960
  • [3] SPECTRAL ANALYSIS OF A COMPLEX SCHRODINGER OPERATOR IN THE SEMICLASSICAL LIMIT
    Almog, Yaniv
    Henry, Raphael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (04) : 2962 - 2993
  • [4] Spectral continuity for operator matrices
    Djordjevic, SV
    Han, YM
    GLASGOW MATHEMATICAL JOURNAL, 2001, 43 : 487 - 490
  • [5] Spectral problems for operator matrices
    Bátkai, A
    Binding, P
    Dijksma, A
    Hryniv, R
    Langer, H
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (12-13) : 1408 - 1429
  • [6] SPECTRAL-ANALYSIS OF THE JACOBI LIMIT-PERIODIC MATRICES
    EGOROVA, IE
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1987, (03): : 6 - 9
  • [7] Spectral properties of some operator matrices
    Il Bong Jung
    Eungil Ko
    Carl Pearcy
    Archiv der Mathematik, 2003, 80 : 37 - 46
  • [8] Spectral properties of some operator matrices
    Jung, IB
    Ko, EG
    Pearcy, C
    ARCHIV DER MATHEMATIK, 2003, 80 (01) : 37 - 46
  • [9] Spectral decomposition of symmetric operator matrices
    Mennicken, R
    Shkalikov, AA
    MATHEMATISCHE NACHRICHTEN, 1996, 179 : 259 - 273
  • [10] On local spectral properties of operator matrices
    Il Ju An
    Eungil Ko
    Ji Eun Lee
    Journal of Inequalities and Applications, 2021