Spectral analysis of operator matrices: limit point insights

被引:0
|
作者
Aymen Bahloul [1 ]
机构
[1] University of Sfax,Department of Mathematics, Faculty of Sciences of Sfax
关键词
Local spectral theory; Descent spectrum; Upper triangular operator matrices; Banach spaces; Limit points; 47A08; 47A10; 47A11;
D O I
10.1007/s11565-024-00573-x
中图分类号
学科分类号
摘要
This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices, denoted by T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document}, on Banach spaces. We rigorously prove that transitioning from the accumulation set of the diagonal descent spectrum, denoted by Accσd(Tdiag)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hbox {Acc} \sigma _{\textrm{d}}({\mathcal {T}}_\textbf{diag})$$\end{document}, to that of the complete descent spectrum, Accσd(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hbox {Acc} \sigma _{\textrm{d}}({\mathcal {T}})$$\end{document}, involves removing specific subsets within Accσd(A1)∩Accσa(A2)∩Accσa(A3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hbox {Acc} \sigma _{\textrm{d}}(A_1) \cap \hbox {Acc} \sigma _{\textrm{a}}(A_2) \cap \hbox {Acc} \sigma _{\textrm{a}}(A_3)$$\end{document}. Additionally, we present sufficient conditions that ensure the limit points of the descent spectrum of the operator matrix encompass the combined limit points of its diagonal entry spectra. This significantly addresses a longstanding question posed by Campbell (Linear Multilinear Algebra 14:195–198, 1983) regarding the limit points for the descent spectrum of the last 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \times 3$$\end{document} operator matrix form. Specifically, Campbell inquired about developing new methods to analyze the spectral properties of such matrices without resorting to partitioning their entries, a challenge that has remained unresolved for decades. Our findings provide a comprehensive solution, illustrating that a deeper understanding of the spectral behavior can be achieved by considering the entire matrix structure collectively.
引用
收藏
相关论文
共 50 条
  • [21] Spectral enclosures for a class of block operator matrices
    Giribet, Juan
    Langer, Matthias
    Martinez Peria, Francisco
    Philipp, Friedrich
    Trunk, Carsten
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (10)
  • [22] Limit points for left and right spectra of operator matrices
    M. Abkari
    M. Karmouni
    A. Tajmouati
    Boletín de la Sociedad Matemática Mexicana, 2019, 25 : 215 - 224
  • [23] Limit points for left and right spectra of operator matrices
    Abkari, M.
    Karmouni, M.
    Tajmouati, A.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (01): : 215 - 224
  • [24] Fractional Laplace operator in two dimensions, approximating matrices, and related spectral analysis
    Lidia Aceto
    Mariarosa Mazza
    Stefano Serra-Capizzano
    Calcolo, 2020, 57
  • [25] Fractional Laplace operator in two dimensions, approximating matrices, and related spectral analysis
    Aceto, Lidia
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    CALCOLO, 2020, 57 (03)
  • [26] SPECTRAL PROPERTIES OF KERNEL MATRICES IN THE FLAT LIMIT
    Barthelme, Simon
    Usevich, Konstantin
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (01) : 17 - 57
  • [27] Spectral analysis of inexact constraint preconditioning for symmetric saddle point matrices
    Sesana, Debora
    Simoncini, Valeria
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (06) : 2683 - 2700
  • [28] Spectral theory for operator matrices related to models in mechanics
    Trunk, C.
    MATHEMATICAL NOTES, 2008, 83 (5-6) : 843 - 850
  • [29] Spectral theory for operator matrices related to models in mechanics
    C. Trunk
    Mathematical Notes, 2008, 83 : 843 - 850
  • [30] SPECTRAL PROPERTIES BETWEEN OPERATOR MATRICES AND HELTON CLASS
    Lee, Ji Eun
    OPERATORS AND MATRICES, 2013, 7 (04): : 813 - 823