Spectral continuity for operator matrices

被引:0
|
作者
Djordjevic, SV
Han, YM
机构
[1] Univ Nish, Fac Philosophy, Dept Math, YU-18000 Nish, Yugoslavia
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that if M-C = ((A)(0) (C)(B)) is a 2 x 2 upper tri- angular operator matrix on the Hilbert space H circle plus K and if sigma(A) boolean AND sigma(B) = 0, then sigma is continuous at A and B if and only if sigma is continuous at M-C, for every C is an element of B(K, H).
引用
收藏
页码:487 / 490
页数:4
相关论文
共 50 条
  • [1] Spectral problems for operator matrices
    Bátkai, A
    Binding, P
    Dijksma, A
    Hryniv, R
    Langer, H
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (12-13) : 1408 - 1429
  • [2] Spectral properties of some operator matrices
    Il Bong Jung
    Eungil Ko
    Carl Pearcy
    Archiv der Mathematik, 2003, 80 : 37 - 46
  • [3] Spectral properties of some operator matrices
    Jung, IB
    Ko, EG
    Pearcy, C
    ARCHIV DER MATHEMATIK, 2003, 80 (01) : 37 - 46
  • [4] Spectral decomposition of symmetric operator matrices
    Mennicken, R
    Shkalikov, AA
    MATHEMATISCHE NACHRICHTEN, 1996, 179 : 259 - 273
  • [5] On local spectral properties of operator matrices
    Il Ju An
    Eungil Ko
    Ji Eun Lee
    Journal of Inequalities and Applications, 2021
  • [6] On local spectral properties of operator matrices
    An, Il Ju
    Ko, Eungil
    Lee, Ji Eun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [7] Continuity of the spectrum on a class of upper triangular operator matrices
    Duggal, B. P.
    Jeon, I. H.
    Kim, I. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 584 - 587
  • [8] Continuity of spectrum and approximate point spectrum on operator matrices
    Sanchez-Perales, S.
    Djordjevic, S. V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (01) : 289 - 294
  • [9] THE SPECTRAL COMPLETION OF A CLASS OF OPERATOR PARTIAL MATRICES
    CUI Jianlian (Institute of Mathematics
    GAO Mingchu (Department of Mathematics
    Systems Science and Mathematical Sciences, 2000, (04) : 358 - 365
  • [10] INNER SPECTRAL RADIUS OF POSITIVE OPERATOR MATRICES
    Manjegani, Seyed Mahmoud
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (01): : 97 - 104