27.09%-efficiency silicon heterojunction back contact solar cell and going beyond

被引:7
|
作者
Wang, Genshun [1 ,2 ,3 ,4 ]
Su, Qiao [1 ,4 ]
Tang, Hanbo [1 ,4 ]
Wu, Hua [2 ,3 ]
Lin, Hao [1 ,4 ]
Han, Can [1 ,4 ]
Wang, Tingting [2 ,3 ]
Xue, Chaowei [2 ,3 ]
Lu, Junxiong [2 ,3 ]
Fang, Liang [2 ,3 ]
Li, Zhenguo [2 ,3 ]
Xu, Xixiang [2 ,3 ]
Gao, Pingqi [1 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Shenzhen Campus,66 Gongchang Rd, Shenzhen 518107, Guangdong, Peoples R China
[2] LONGi Cent R&D Inst, Xian 712000, Peoples R China
[3] LONGi Green Energy Technol Co Ltd, Xian 710016, Peoples R China
[4] Sun Yat Sen Univ, Inst Solar Energy Syst, State Key Lab Optoelect Mat & Technol, Guangdong Engn Technol Res Ctr Sustainable Photovo, Guangzhou 510275, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
EFFICIENCY; QUANTIFICATION; RECOMBINATION; RESISTANCE; MODEL;
D O I
10.1038/s41467-024-53275-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Crystalline-silicon heterojunction back contact solar cells represent the forefront of photovoltaic technology, but encounter significant challenges in managing charge carrier recombination and transport to achieve high efficiency. In this study, we produced highly efficient heterojunction back contact solar cells with a certified efficiency of 27.09% using a laser patterning technique. Our findings indicate that recombination losses primarily arise from the hole-selective contact region and polarity boundaries. We propose solutions to these issues and establish a clear relationship between contact resistivity, series resistance, and the design of the rear-side pattern. Furthermore, we demonstrate that the wafer edge becomes the main channel for current density loss caused by carrier recombination once electrical shading around the electron-selective contact region is mitigated. With the advanced nanocrystalline passivating contact, wafer edge passivation technologies and meticulous optimization of front anti-reflection coating and rear reflector, achieving efficiencies as high as 27.7% is feasible. The management of charge carrier recombination and transport in heterojunction back contact solar cells poses significant challenges in achieving a high efficiency. Here, authors analyze various loss mechanisms of devices fabricated by laser patterning, and achieve a certified efficiency of 27.09%.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology
    Yoshikawa, Kunta
    Yoshida, Wataru
    Irie, Toru
    Kawasaki, Hayato
    Konishi, Katsunori
    Ishibashi, Hirotaka
    Asatani, Tsuyoshi
    Adachi, Daisuke
    Kanematsu, Masanori
    Uzu, Hisashi
    Yamamoto, Kenji
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 173 : 37 - 42
  • [32] Bifacial silicon heterojunction solar cell with deposited back surface field
    Goldbach, HD
    Bink, A
    Schropp, REI
    Amorphous and Nanocrystalline Silicon Science and Technology-2005, 2005, 862 : 419 - 424
  • [33] Optimization of interdigitated back contact silicon heterojunction solar cells (IBC-SiHJ)
    Berrouba-Tani, Nadera
    Ghaffour, Kherreddine
    2014 NORTH AFRICAN WORKSHOP ON DIELECTRIC MATERIALS FOR PHOTOVOLTAIC SYSTEMS (NAWDMPV), 2014,
  • [34] Nanosecond Pulsed Laser Patterning of Interdigitated Back Contact Heterojunction Silicon Solar Cells
    Sinha, Arpan
    Soman, Anishkumar
    Das, Ujjwal
    Hegedus, Steven
    Gupta, Mool C.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2020, 10 (06): : 1648 - 1656
  • [35] ITO-free metallization for interdigitated back contact silicon heterojunction solar cells
    Stang, Johann-Christoph
    Hendrichs, Max-Sebastian
    Merkle, Agnes
    Peibst, Robby
    Stannowski, Bernd
    Korte, Lars
    Rech, Bernd
    7TH INTERNATIONAL CONFERENCE ON SILICON PHOTOVOLTAICS, SILICONPV 2017, 2017, 124 : 379 - 383
  • [36] The Emitter Having Microcrystalline Surface in Silicon Heterojunction Interdigitated Back Contact Solar Cells
    Ji, Kwang-sun
    Syn, Hojung
    Choi, Junghoon
    Lee, Heon-Min
    Kim, Donghwan
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (10)
  • [37] 2D MODELING OF SILICON HETEROJUNCTION INTERDIGITATED BACK CONTACT SOLAR CELLS
    Herasimenka, Stanislau
    Ghosh, Kunal
    Bowden, Stuart
    Honsberg, Christiana
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 1390 - 1394
  • [38] Silicon heterojunction solar cell with passivated hole selective MoOx contact
    Battaglia, Corsin
    de Nicolas, Silvia Martin
    De Wolf, Stefaan
    Yin, Xingtian
    Zheng, Maxwell
    Ballif, Christophe
    Javey, Ali
    APPLIED PHYSICS LETTERS, 2014, 104 (11)
  • [39] Influence of front contact material on silicon heterojunction solar cell performance
    Rizzoli, R
    Galloni, R
    Summonte, C
    Pinghini, R
    Centurioni, E
    Zignani, F
    Desalvo, A
    Rava, P
    Madan, A
    AMORPHOUS AND MICROCRYSTALLINE SILICON TECHNOLOGY - 1997, 1997, 467 : 807 - 812
  • [40] Investigation of Internal Quantum Efficiency of Bifacial Interdigitated Back Contact (IBC) Crystalline Silicon Solar Cell
    Tachibana, Tomihisa
    Mochizuki, Toshimitsu
    Shirasawa, Katsuhiko
    Takato, Hidetaka
    IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (06): : 1526 - 1531