27.09%-efficiency silicon heterojunction back contact solar cell and going beyond

被引:7
|
作者
Wang, Genshun [1 ,2 ,3 ,4 ]
Su, Qiao [1 ,4 ]
Tang, Hanbo [1 ,4 ]
Wu, Hua [2 ,3 ]
Lin, Hao [1 ,4 ]
Han, Can [1 ,4 ]
Wang, Tingting [2 ,3 ]
Xue, Chaowei [2 ,3 ]
Lu, Junxiong [2 ,3 ]
Fang, Liang [2 ,3 ]
Li, Zhenguo [2 ,3 ]
Xu, Xixiang [2 ,3 ]
Gao, Pingqi [1 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Shenzhen Campus,66 Gongchang Rd, Shenzhen 518107, Guangdong, Peoples R China
[2] LONGi Cent R&D Inst, Xian 712000, Peoples R China
[3] LONGi Green Energy Technol Co Ltd, Xian 710016, Peoples R China
[4] Sun Yat Sen Univ, Inst Solar Energy Syst, State Key Lab Optoelect Mat & Technol, Guangdong Engn Technol Res Ctr Sustainable Photovo, Guangzhou 510275, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
EFFICIENCY; QUANTIFICATION; RECOMBINATION; RESISTANCE; MODEL;
D O I
10.1038/s41467-024-53275-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Crystalline-silicon heterojunction back contact solar cells represent the forefront of photovoltaic technology, but encounter significant challenges in managing charge carrier recombination and transport to achieve high efficiency. In this study, we produced highly efficient heterojunction back contact solar cells with a certified efficiency of 27.09% using a laser patterning technique. Our findings indicate that recombination losses primarily arise from the hole-selective contact region and polarity boundaries. We propose solutions to these issues and establish a clear relationship between contact resistivity, series resistance, and the design of the rear-side pattern. Furthermore, we demonstrate that the wafer edge becomes the main channel for current density loss caused by carrier recombination once electrical shading around the electron-selective contact region is mitigated. With the advanced nanocrystalline passivating contact, wafer edge passivation technologies and meticulous optimization of front anti-reflection coating and rear reflector, achieving efficiencies as high as 27.7% is feasible. The management of charge carrier recombination and transport in heterojunction back contact solar cells poses significant challenges in achieving a high efficiency. Here, authors analyze various loss mechanisms of devices fabricated by laser patterning, and achieve a certified efficiency of 27.09%.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Aluminium metallisation for interdigitated back-contact silicon heterojunction solar cells
    Stang, Johann-Christoph
    Haschke, Jan
    Mews, Mathias
    Merkle, Agnes
    Peibst, Robby
    Rech, Bernd
    Korte, Lars
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (08)
  • [22] Aluminium metallisation for interdigitated back-contact silicon heterojunction solar cells
    Stang, Johann-Christoph
    Haschke, Jan
    Mews, Mathias
    Merkle, Agnes
    Peibst, Robby
    Rech, Bernd
    Korte, Lars
    Japanese Journal of Applied Physics, 2017, 56 (08):
  • [23] New metallization scheme for interdigitated back contact silicon heterojunction solar cells
    De Vecchi, Sylvain
    Blevin, Thomas
    Desrues, Thibaut
    Souche, Florent
    Munoz, Delfina
    Lemiti, Mustapha
    Ribeyron, Pierre-Jean
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2013), 2013, 38 : 701 - 706
  • [24] Effect of annealing on interdigitated back contact silicon heterojunction solar cells(IBC)
    Rizi, Mansoure Moeini
    Balaji, Pradeep
    Dauksher, Bill
    Augusto, Andre
    Goodnick, Stephen
    Honsberg, Christiana B.
    Goryll, Michael
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 1541 - 1544
  • [25] Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%
    Trinh, Cham Thi
    Preissler, Natalie
    Sonntag, Paul
    Muske, Martin
    Jaeger, Klaus
    Trahms, Martina
    Schlatmann, Rutger
    Rech, Bernd
    Amkreutz, Daniel
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 174 : 187 - 195
  • [26] Going beyond efficiency for solar evaporation
    Xu, Ning
    Li, Jinlei
    Finnerty, Casey
    Song, Yan
    Zhou, Lin
    Zhu, Bin
    Wang, Peng
    Mi, Baoxia
    Zhu, Jia
    NATURE WATER, 2023, 1 (06): : 494 - 501
  • [27] Electron-selective quinhydrone passivated back contact for high-efficiency silicon/organic heterojunction solar cells
    Zou, Ziyu
    Liu, Weiqing
    Wang, Dan
    Liu, Zhaolang
    Jiang, Ershuai
    Wu, Sudong
    Zhu, Juye
    Guo, Wei
    Sheng, Jiang
    Ye, Jichun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 185 : 218 - 225
  • [28] Back-Contacted Silicon Heterojunction Solar Cells With Efficiency >21%
    Tomasi, Andrea
    Paviet-Salomon, Bertrand
    Lachenal, Damien
    de Nicolas, Silvia Martin
    Descoeudres, Antoine
    Geissbuehler, Jonas
    De Wolf, Stefaan
    Ballif, Christophe
    IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (04): : 1046 - 1054
  • [29] ALTERNATIVE APPROACHES FOR LOW TEMPERATURE FRONT SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL
    Shu, Brent
    Das, Ujjwal
    Appel, Jesse
    McCandless, Brian
    Hegedus, Steven
    Birkmire, Robert
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 3223 - 3228
  • [30] 6 inch High Efficiency Back Contact Crystalline Si Solar Cell Applying Heterojunction and Thinfilm Technology
    Yoshikawa, Kunta
    Kawasaki, Hayato
    Yoshida, Wataru
    Konishi, Katsunori
    Nakano, Kunihiro
    Uto, Toshihiko
    Adachi, Daisuke
    Irie, Toni
    Kanematsu, Masanori
    Uzu, Hisashi
    Terashita, Toni
    Meguro, Tomomi
    Yoshimi, Masashi
    Yamamoto, Kenji
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 3366 - 3369