GAINET: Enhancing drug-drug interaction predictions through graph neural networks and attention mechanisms

被引:0
|
作者
Das, Bihter [1 ]
Dagdogen, Huseyin Alperen [1 ]
Kaya, Muhammed Onur [1 ]
Tuncel, Ozkan [1 ]
Akgul, Muhammed Samet [1 ]
Das, Resul [1 ]
机构
[1] Firat Univ, Fac Technol, Dept Software Engn, TR-23119 Elazig, Turkiye
关键词
Drug-target interactions; Graph neural networks; Attention mechanism; Deep learning; Environmental sustainability; Pharmacoinformatics;
D O I
10.1016/j.chemolab.2025.105337
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Drug-drug interactions (DDIs) area significant challenge in modern healthcare, especially in polypharmacy, where patients are given more than one drug at the same time. Accurate prediction of DDIs plays an important role in reducing adverse effects and improving recovery inpatients. In this study, we propose GAINET, a derivative of the graph-based neural network model enhanced with attention mechanisms, to accurately improve the prediction of drug-drug interactions. The model effectively learns interaction models by focusing on critical features in drug structures and their interactions with each other through molecular graph representations. For the performance evaluation of GAINET, which is trained on the DrugBank dataset containing 191,870 DDI examples, basic metrics such as AUC-ROC, F1 score, precision and recall are used. The obtained accuracy of 0.9050, F1 score of 0.9096 and AUC-ROC of 0.9505 indicate that GAINET outperforms many state-of-the-art models and has good generalization ability even on previously untested data. Moreover, the molecular attention mechanism enables interpretable predictions by highlighting the interaction-specific molecular substructures. All these findings indicate that GAINET, our proposed model for DDI prediction, can serve as a valuable and useful tool and advance the development of reliable pharmacological treatments.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] SGFNNs: Signed Graph Filtering-based Neural Networks for Predicting Drug-Drug Interactions
    Chen, Ming
    Jiang, Wei
    Pan, Yi
    Dai, Jianhua
    Lei, Yunwen
    Ji, Chunyan
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (10) : 1104 - 1116
  • [42] Detecting Side Effects of Adverse Drug Reactions Through Drug-Drug Interactions Using Graph Neural Networks and Self-Supervised Learning
    Chandraumakantham, Omkumar
    Srinivasan, Srinitish
    Pathak, Varenya
    IEEE ACCESS, 2024, 12 : 93823 - 93840
  • [43] DDI-GCN: Drug-drug interaction prediction via explainable graph convolutional networks
    Zhong, Yi
    Zheng, Houbing
    Chen, Xiaoming
    Zhao, Yu
    Gao, Tingfang
    Dong, Huiqun
    Luo, Heng
    Weng, Zuquan
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 144
  • [44] Drug-Drug Interaction Prediction on a Biomedical Literature Knowledge Graph
    Bougiatiotis, Konstantinos
    Aisopos, Fotis
    Nentidis, Anastasios
    Krithara, Anastasia
    Paliouras, Georgios
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 122 - 132
  • [45] An Integration Framework of Secure Multiparty Computation and Deep Neural Network for Improving Drug-Drug Interaction Predictions
    Pan, Liang
    Xiao, Xia
    Liu, Shengyun
    Peng, Shaoliang
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (09) : 1034 - 1045
  • [46] Neural system for in silico drug-drug interaction screening
    Polak, Sebastian
    Brandys, Jerzy
    Mendyk, Aleksander
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 75 - +
  • [47] Extraction of drug-drug interaction using neural embedding
    Hou, Wen Juan
    Ceesay, Bamfa
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2018, 16 (06)
  • [48] A substructure-aware graph neural network incorporating relation features for drug-drug interaction prediction
    Dong, Liangcheng
    Feng, Baoming
    Deng, Zengqian
    Wang, Jinlong
    Ni, Peihao
    Zhang, Yuanyuan
    QUANTITATIVE BIOLOGY, 2024, 12 (03) : 255 - 270
  • [49] HetDDI: a pre-trained heterogeneous graph neural network model for drug-drug interaction prediction
    Li, Zhe
    Tu, Xinyi
    Chen, Yuping
    Lin, Wenbin
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [50] Multi-type feature fusion based on graph neural network for drug-drug interaction prediction
    Changxiang He
    Yuru Liu
    Hao Li
    Hui Zhang
    Yaping Mao
    Xiaofei Qin
    Lele Liu
    Xuedian Zhang
    BMC Bioinformatics, 23