Drug-Drug Interaction Prediction on a Biomedical Literature Knowledge Graph

被引:12
|
作者
Bougiatiotis, Konstantinos [1 ,2 ]
Aisopos, Fotis [1 ]
Nentidis, Anastasios [1 ,3 ]
Krithara, Anastasia [1 ]
Paliouras, Georgios [1 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Informat & Telecommun, Athens, Greece
[2] Natl & Kapodistrian Univ Athens, Dept Informat & Telecommun, Athens, Greece
[3] Aristotle Univ Thessaloniki, Sch Informat, Thessaloniki, Greece
关键词
Literature mining; Knowledge graph; Path analysis; Knowledge discovery; Drug-drug interactions;
D O I
10.1007/978-3-030-59137-3_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Graphs provide insights from data extracted in various domains. In this paper, we present an approach discovering probable drug-to-drug interactions, through the generation of a Knowledge Graph from disease-specific literature. The Graph is generated using natural language processing and semantic indexing of biomedical publications and open resources. The semantic paths connecting different drugs in the Graph are extracted and aggregated into feature vectors representing drug pairs. A classifier is trained on known interactions, extracted from a manually curated drug database used as a golden standard, and discovers new possible interacting pairs. We evaluate this approach on two use cases, Alzheimer's Disease and Lung Cancer. Our system is shown to outperform competing graph embedding approaches, while also identifying new drug-drug interactions that are validated retrospectively.
引用
收藏
页码:122 / 132
页数:11
相关论文
共 50 条
  • [1] Biomedical Knowledge Graph Embedding With Capsule Network for Multi-Label Drug-Drug Interaction Prediction
    Su, Xiaorui
    You, Zhuhong
    Huang, Deshuang
    Wang, Lei
    Wong, Leon
    Ji, Boya
    Zhao, Bowei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5640 - 5651
  • [2] KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction
    Lin, Xuan
    Quan, Zhe
    Wang, Zhi-Jie
    Ma, Tengfei
    Zeng, Xiangxiang
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2739 - 2745
  • [3] DDI-KGAT: A Graph Attention Network on Biomedical Knowledge Graph for the Prediction of Drug-Drug Interactions
    Kundi, Iqra Naseer
    Sheikh, Shahzad Amin
    Malik, Fahad Mumtaz
    Bhatti, Kamran Aziz
    IEEE ACCESS, 2024, 12 : 162028 - 162039
  • [4] Integrated Knowledge Graph and Drug Molecular Graph Fusion via Adversarial Networks for Drug-Drug Interaction Prediction
    Li, Yu
    You, Zhu-Hong
    Yuan, Yang
    Mi, Cheng-Gang
    Huang, Yu-An
    Yi, Hai-Cheng
    Hou, Lin-Xuan
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (21) : 8361 - 8372
  • [5] Drug-drug Interaction Prediction with Graph Representation Learning
    Chen, Xin
    Liu, Xien
    Wu, Ji
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 354 - 361
  • [6] A Knowledge Graph-Based Method for Drug-Drug Interaction Prediction With Contrastive Learning
    Zhong, Jian
    Zhao, Haochen
    Zhao, Qichang
    Wang, Jianxin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (06) : 2485 - 2495
  • [7] Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
    Remzi Celebi
    Huseyin Uyar
    Erkan Yasar
    Ozgur Gumus
    Oguz Dikenelli
    Michel Dumontier
    BMC Bioinformatics, 20
  • [8] Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
    Celebi, Remzi
    Uyar, Huseyin
    Yasar, Erkan
    Gumus, Ozgur
    Dikenelli, Oguz
    Dumontier, Michel
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [9] Transforming Drug-Drug Interaction Extraction from Biomedical Literature
    Zaikis, Dimitrios
    Kokkas, Stylianos
    Vlahavas, Ioannis
    PROCEEDINGS OF THE 12TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE, SETN 2022, 2022,
  • [10] GraphDDI: Graph Neural Network for Prediction of Drug-Drug Interaction
    Gupta, Suyash
    Laghuvarapu, Siddhartha
    Priyakumar, U. Deva
    ARTIFICIAL INTELLIGENCE IN HEALTHCARE, PT I, AIIH 2024, 2024, 14975 : 17 - 30