Low-noise and high-rate front-end ASIC for APD detectors in STCF ECAL

被引:0
|
作者
Liu, Chao [1 ]
Zheng, Ran [1 ,2 ]
Wang, Jia [3 ]
Wei, Xiao-Min [1 ]
Xue, Fei-Fei [1 ]
Zhao, Rui-Guang [1 ]
Hu, Yann [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Technol, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518063, Peoples R China
[3] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Readout electronics; APD; Charge measurement; High count rate; STCF; CMOS PEAK DETECT; CIRCUIT; DESIGN;
D O I
10.1007/s41365-025-01640-4
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This study presents a low-noise, high-rate front-end readout application-specific integrated circuit (ASIC) designed for the electromagnetic calorimeter (ECAL) of the Super Tau-Charm Facility (STCF). To address the high background-count rate in the STCF ECAL, the temporal features of signals are analyzed node-by-node along the chain of the analog front-end circuit. Then, the system is optimized to mitigate the pile-up effects and elevate the count rate to megahertz levels. First, a charge-sensitive amplifier (CSA) with a fast reset path is developed, enabling quick resetting when the output reaches the maximum amplitude. This prevents the CSA from entering a pulse-dead zone owing to amplifier saturation caused by the pile-up. Second, a high-order shaper with baseline holder circuits is improved to enhance the anti-pile-up capability while maintaining an effective noise-filtering performance. Third, a high-speed peak-detection and hold circuit with an asynchronous first-input-first-output buffer function is proposed to hold and read the piled-up signals of the shaper. The ASIC is designed and manufactured using a standard commercial 1P6M 0.18 mu m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0.18}\,{\upmu }\hbox {m}$$\end{document} mixed-signal CMOS process with a chip area of 2.4mmx1.6mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2.4}\,\hbox {mm} \times {1.6}\,\hbox {mm}$$\end{document}. The measurement results demonstrate a dynamic range of 4-500 fC with a nonlinearity error below 1.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}. For periodically distributed input signals, a count rate of 1.5 MHz/Ch is achieved with a peak time of 360 ns, resulting in an equivalent noise charge (ENC) of 2500e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2500}\,\hbox {e}<^>{-}$$\end{document}. The maximum count rate is 4 MHz/Ch at a peak time of 120 ns. At a peak time of 1.68 mu s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1.68}\,{\upmu }\hbox {s}$$\end{document} with a 270 pF external capacitance, the minimum ENC is 1966e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1966}\,\hbox {e}<^>{-}$$\end{document}, and the noise slope is 3.08e-/pF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${3.08}\,\hbox {e}<^>{-}/\hbox {pF}$$\end{document}. The timing resolution is better than 125 ps at an input charge of 200 fC. The power consumption is 35 mW/Ch.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Performance of a low noise front-end ASIC for Si/CdTe detectors in compton gamma-ray telescope
    Tajima, H
    Nakamoto, T
    Tanaka, T
    Uno, S
    Mitani, T
    Silva, EDE
    Fukazawa, Y
    Kamae, T
    Madejski, G
    Marlow, D
    Nakazawa, K
    Nomachi, M
    Okada, Y
    Takahashi, T
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2004, 51 (03) : 842 - 847
  • [42] LOW-NOISE FRONT-END ELECTRONICS FOR MICROSTRIP POSITION SENSORS AND VERTEX DETECTORS FOR EXPERIMENTS AT TEV ENERGIES
    AVONDO, JP
    DANGELO, P
    JARRON, P
    MANFREDI, PF
    SPEZIALI, V
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1985, 241 (01): : 107 - 114
  • [43] DRAGO chip: A low-noise CMOS preamplifier shaper for silicon detectors with integrated front-end JFET
    Fiorini, C
    Porro, M
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (05) : 1647 - 1653
  • [44] ON THE DESIGN OF A JFET-CMOS FRONT-END FOR LOW-NOISE DATA ACQUISITION FROM MICROSTRIP DETECTORS
    LUTZ, G
    MALOBERTI, F
    MANFREDI, PF
    RE, V
    SPEZIALI, V
    BUTTLER, W
    VOGT, H
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1988, 264 (2-3): : 391 - 398
  • [45] A Low Noise High Dynamic Range Analog Front-end ASIC for the AGIPD XFEL Detector
    Shi, Xintian
    Dinapoli, Roberto
    Greiffenberg, Dominic
    Henrich, Beat
    Mozzanica, Aldo
    Schmitt, Bernd
    Krueger, Hans
    Graafsma, Heinz
    Klyuev, Alexander
    Marras, Alessandro
    Trunk, Ulrich
    2012 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2012, : 933 - 936
  • [46] An ultrafast front-end ASIC for APD array detectors in X-ray time-resolved experiments
    周杨帆
    李秋菊
    刘鹏
    樊磊
    徐伟
    陶冶
    李贞杰
    Chinese Physics C, 2017, (06) : 138 - 145
  • [47] An ultrafast front-end ASIC for APD array detectors in X-ray time-resolved experiments
    周杨帆
    李秋菊
    刘鹏
    樊磊
    徐伟
    陶冶
    李贞杰
    Chinese Physics C, 2017, 41 (06) : 138 - 145
  • [48] An ultrafast front-end ASIC for APD array detectors in X-ray time-resolved experiments
    Zhou, Yang-Fan
    Li, Qiu-Ju
    Liu, Peng
    Fan, Lei
    Xu, Wei
    Tao, Ye
    Li, Zhen-Jie
    CHINESE PHYSICS C, 2017, 41 (06)
  • [49] FROST: a low-noise high-rate photon counting ASIC for X-ray applications
    Prest, M
    Vallazza, E
    Chiavacci, M
    Mariani, R
    Motto, S
    Neri, M
    Scantamburlo, N
    Arfelli, F
    Conighi, A
    Lengo, R
    Olivo, A
    Pani, S
    Poropat, P
    Rashevsky, A
    Rigon, L
    Tromba, G
    Castelli, E
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 461 (1-3): : 435 - 439
  • [50] Low-power Low-noise inductorless Front-end for IoT applications
    Yang, Yu-Chu
    Yang, Jeng-Rern
    2017 6TH INTERNATIONAL SYMPOSIUM ON NEXT GENERATION ELECTRONICS (ISNE), 2017,