Low-noise and high-rate front-end ASIC for APD detectors in STCF ECAL

被引:0
|
作者
Liu, Chao [1 ]
Zheng, Ran [1 ,2 ]
Wang, Jia [3 ]
Wei, Xiao-Min [1 ]
Xue, Fei-Fei [1 ]
Zhao, Rui-Guang [1 ]
Hu, Yann [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Technol, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518063, Peoples R China
[3] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Readout electronics; APD; Charge measurement; High count rate; STCF; CMOS PEAK DETECT; CIRCUIT; DESIGN;
D O I
10.1007/s41365-025-01640-4
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This study presents a low-noise, high-rate front-end readout application-specific integrated circuit (ASIC) designed for the electromagnetic calorimeter (ECAL) of the Super Tau-Charm Facility (STCF). To address the high background-count rate in the STCF ECAL, the temporal features of signals are analyzed node-by-node along the chain of the analog front-end circuit. Then, the system is optimized to mitigate the pile-up effects and elevate the count rate to megahertz levels. First, a charge-sensitive amplifier (CSA) with a fast reset path is developed, enabling quick resetting when the output reaches the maximum amplitude. This prevents the CSA from entering a pulse-dead zone owing to amplifier saturation caused by the pile-up. Second, a high-order shaper with baseline holder circuits is improved to enhance the anti-pile-up capability while maintaining an effective noise-filtering performance. Third, a high-speed peak-detection and hold circuit with an asynchronous first-input-first-output buffer function is proposed to hold and read the piled-up signals of the shaper. The ASIC is designed and manufactured using a standard commercial 1P6M 0.18 mu m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0.18}\,{\upmu }\hbox {m}$$\end{document} mixed-signal CMOS process with a chip area of 2.4mmx1.6mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2.4}\,\hbox {mm} \times {1.6}\,\hbox {mm}$$\end{document}. The measurement results demonstrate a dynamic range of 4-500 fC with a nonlinearity error below 1.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}. For periodically distributed input signals, a count rate of 1.5 MHz/Ch is achieved with a peak time of 360 ns, resulting in an equivalent noise charge (ENC) of 2500e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2500}\,\hbox {e}<^>{-}$$\end{document}. The maximum count rate is 4 MHz/Ch at a peak time of 120 ns. At a peak time of 1.68 mu s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1.68}\,{\upmu }\hbox {s}$$\end{document} with a 270 pF external capacitance, the minimum ENC is 1966e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1966}\,\hbox {e}<^>{-}$$\end{document}, and the noise slope is 3.08e-/pF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${3.08}\,\hbox {e}<^>{-}/\hbox {pF}$$\end{document}. The timing resolution is better than 125 ps at an input charge of 200 fC. The power consumption is 35 mW/Ch.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A low-noise front-end with beamsteering capability at 35 GHz
    Grubinger, Hannes
    Barth, Helmut
    Vahldieck, Ruediger
    2007 EUROPEAN MICROWAVE CONFERENCE, VOLS 1-4, 2007, : 1594 - 1597
  • [32] The MAJORANA low-noise low-background front-end electronics
    Abgrall, N.
    Aguayo, E.
    Avignone, F. T., III
    Barabash, A. S.
    Bertrand, F. E.
    Boswell, M.
    Brudanin, V.
    Busch, M.
    Byram, D.
    Caldwell, A. S.
    Chan, Y-D.
    Christofferson, C. D.
    Combs, D. C.
    Cuesta, C.
    Detwiler, J. A.
    Doe, P. J.
    Efremenko, Yu.
    Egorov, V.
    Ejiri, H.
    Elliott, S. R.
    Fast, J. E.
    Finnerty, P.
    Fraenkle, F. M.
    Galindo-Uribarri, A.
    Giovanetti, G. K.
    Goett, J.
    Green, M. P.
    Gruszko, J.
    Guiseppe, V. E.
    Gusev, K.
    Hallin, A. L.
    Hazama, R.
    Hegai, A.
    Henning, R.
    Hoppe, E. W.
    Howard, S.
    Howe, M. A.
    Keeter, K. J.
    Kidd, M. F.
    Kochetov, O.
    Konovalov, S. I.
    Kouzes, R. T.
    LaFerriere, B. D.
    Leon, J.
    Leviner, L. E.
    Loach, J. C.
    MacMullin, J.
    MacMullin, S.
    Martin, R. D.
    Meijer, S.
    13TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, TAUP 2013, 2015, 61 : 654 - 657
  • [33] A Broadband Low-Noise Receiver Front-End with Ultrawide Bandwidth
    Volkov, Vadym
    Vavriv, Dmytro
    Bulakh, Evgene
    Kravtsov, Andrey
    2014 20TH INTERNATIONAL CONFERENCE ON MICROWAVES, RADAR, AND WIRELESS COMMUNICATION (MIKON), 2014,
  • [34] LOW-NOISE FRONT-END ELECTRONICS FOR DILUTION REFRIGERATOR EXPERIMENTS
    STOCKWELL, W
    YVON, D
    AUBOURG, E
    BARNES, PD
    CUMMINGS, A
    DASILVA, A
    ELLMAN, B
    ROSS, RR
    SADOULET, B
    SHUTT, T
    SMITH, G
    STUBBS, C
    WANG, N
    WHITE, S
    YOUNG, BA
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1993, 93 (3-4) : 755 - 760
  • [35] A low-noise CMOS front-end for TOF-PET
    Rolo, M. D.
    Alves, L. N.
    Martins, E. V.
    Rivetti, A.
    Santos, M. B.
    Varela, J.
    JOURNAL OF INSTRUMENTATION, 2011, 6
  • [36] Low-power low-noise 8-channel EEG front-end ASIC for ambulatory acquisition systems
    Yazicioglu, Refet Firat
    Merken, Patrick
    Puers, Robert
    Van Hoof, Chris
    ESSCIRC 2006: PROCEEDINGS OF THE 32ND EUROPEAN SOLID-STATE CIRCUITS CONFERENCE, 2006, : 247 - +
  • [37] A low-noise front-end with beamsteering capability at 35 GHz
    Grubinger, Hannes
    Barth, Helmut
    Vahldieck, Ruediger
    2007 EUROPEAN RADAR CONFERENCE, 2007, : 314 - 317
  • [38] "CUBE", A Low-noise CMOS Preamplifier as Alternative to JFET Front-end for High-count Rate Spectroscopy
    Bombelli, L.
    Fiorini, C.
    Frizzi, T.
    Alberti, R.
    Longoni, A.
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 1972 - 1975
  • [39] Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging
    Gao, W.
    Liu, H.
    Gan, B.
    Hu, Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 745 : 57 - 62
  • [40] Performance of a low noise front-end ASIC for Si/CdTe detectors in Compton gamma-ray telescope
    Tajima, H
    Nakamoto, T
    Tanaka, T
    Uno, S
    Mitani, T
    Silva, EDE
    Fukazawa, Y
    Kamae, T
    Madejski, G
    Marlow, D
    Nakazawa, K
    Nomachi, M
    Okada, Y
    Takahashi, T
    2003 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-5, 2004, : 396 - 401