Enhanced blur-robust monocular depth estimation via self-supervised learning

被引:0
|
作者
Sung, Chi-Hun [1 ]
Kim, Seong-Yeol [1 ]
Shin, Ho-Ju [1 ]
Lee, Se-Ho [2 ]
Kim, Seung-Wook [2 ]
机构
[1] Pukyong Natl Univ, Div Elect & Commun Engn, Busan, South Korea
[2] Jeonbuk Natl Univ, Ctr Adv Image Informat Technol, Dept Comp Sci & Artificial Intelligence, Jeonju, South Korea
关键词
computer vision; Image and Vision Processing and Display Technology; image processing; stereo image processing;
D O I
10.1049/ell2.70098
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a novel self-supervised learning strategy to improve the robustness of a monocular depth estimation (MDE) network against motion blur. Motion blur, a common problem in real-world applications like autonomous driving and scene reconstruction, often hinders accurate depth perception. Conventional MDE methods are effective under controlled conditions but struggle to generalise their performance to blurred images. To address this problem, we generate blur-synthesised data to train a robust MDE model without the need for preprocessing, such as deblurring. By incorporating self-distillation techniques and using blur-synthesised data, the depth estimation accuracy for blurred images is significantly enhanced without additional computational or memory overhead. Extensive experimental results demonstrate the effectiveness of the proposed method, enhancing existing MDE models to accurately estimate depth information across various blur conditions.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Self-Supervised Monocular Depth Estimation With Multiscale Perception
    Zhang, Yourun
    Gong, Maoguo
    Li, Jianzhao
    Zhang, Mingyang
    Jiang, Fenlong
    Zhao, Hongyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3251 - 3266
  • [32] Self-supervised monocular depth estimation for gastrointestinal endoscopy
    Liu, Yuying
    Zuo, Siyang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 238
  • [33] Self-supervised monocular depth estimation with direct methods
    Wang, Haixia
    Sun, Yehao
    Wu, Q. M. Jonathan
    Lu, Xiao
    Wang, Xiuling
    Zhang, Zhiguo
    NEUROCOMPUTING, 2021, 421 : 340 - 348
  • [34] Self-supervised monocular depth estimation with direct methods
    Wang H.
    Sun Y.
    Wu Q.M.J.
    Lu X.
    Wang X.
    Zhang Z.
    Neurocomputing, 2021, 421 : 340 - 348
  • [35] Adaptive Self-supervised Depth Estimation in Monocular Videos
    Mendoza, Julio
    Pedrini, Helio
    IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 687 - 699
  • [36] Self-Supervised Monocular Depth Estimation With Extensive Pretraining
    Choi, Hyukdoo
    IEEE ACCESS, 2021, 9 : 157236 - 157246
  • [37] Self-Supervised Monocular Depth Estimation with Extensive Pretraining
    Choi, Hyukdoo
    IEEE Access, 2021, 9 : 157236 - 157246
  • [38] Self-Supervised Monocular Depth Estimation With Isometric-Self-Sample-Based Learning
    Cha, Geonho
    Jang, Ho-Deok
    Wee, Dongyoon
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04) : 2173 - 2180
  • [39] Self-Supervised Learning for Monocular Depth Estimation on Minimally Invasive Surgery Scenes
    Shao, Shuwei
    Pei, Zhongcai
    Chen, Weihai
    Zhang, Baochang
    Wu, Xingming
    Sun, Dianmin
    Doermann, David
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 7159 - 7165
  • [40] SelfTune: Metrically Scaled Monocular Depth Estimation through Self-Supervised Learning
    Choi, Jaehoon
    Jung, Dongki
    Lee, Yonghan
    Kim, Deokhwa
    Manocha, Dinesh
    Lee, Donghwan
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 6511 - 6518