Stacked CNN-based multichannel attention networks for Alzheimer disease detection

被引:0
|
作者
Hassan, Najmul [1 ]
Miah, Abu Saleh Musa [1 ]
Suzuki, Kota [1 ]
Okuyama, Yuichi [1 ]
Shin, Jungpil [1 ]
机构
[1] Univ Aizu, Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima 9650006, Japan
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Alzheimer's Disease; Convolutional neural network (CNN); Stack CNN; SCCAN; Neurological Disease; Brain Disease; MRI; ADNI; Channel Attention network; CONVOLUTIONAL NEURAL-NETWORK; DEEP LEARNING-MODEL; CLASSIFICATION; DIAGNOSIS; DEMENTIA;
D O I
10.1038/s41598-025-85703-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's Disease (AD) is a progressive condition of a neurological brain disorder recognized by symptoms such as dementia, memory loss, alterations in behaviour, and impaired reasoning abilities. Recently, many researchers have been working to develop an effective AD recognition system using deep learning (DL) based convolutional neural network (CNN) model aiming to deploy the automatic medical image diagnosis system. The existing system is still facing difficulties in achieving satisfactory performance in terms of accuracy and efficiency because of the lack of feature ineffectiveness. This study proposes a lightweight Stacked Convolutional Neural Network with a Channel Attention Network (SCCAN) for MRI based on AD classification to overcome the challenges. In the procedure, we sequentially integrate 5 CNN modules, which form a stack CNN aiming to generate a hierarchical understanding of features through multi-level extraction, effectively reducing noise and enhancing the weight's efficacy. This feature is then fed into a channel attention module to select the practical features based on the channel dimension, facilitating the selection of influential features. . Consequently, the model exhibits reduced parameters, making it suitable for training on smaller datasets. Addressing the class imbalance in the Kaggle MRI dataset, a balanced distribution of samples among classes is emphasized. Extensive experiments of the proposed model with the ADNI1 Complete 1Yr 1.5T, Kaggle, and OASIS-1 datasets showed 99.58%, 99.22%, and 99.70% accuracy, respectively. The proposed model's high performance surpassed state-of-the-art (SOTA) models and proved its excellence as a significant advancement in AD classification using MRI images.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Endocrine CNN-Based Fault Detection for DC Motors
    Djordjevic, Andjela D.
    Milovanovic, Miroslav B.
    Milojkovic, Marko T.
    Petrovic, Jelena G.
    Nikolic, Sasa S.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2024, 30 (03) : 4 - 14
  • [32] CNN-based Asymmetric Detection Method for Appearance Inspection
    Okazaki M.
    Hanayama R.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2022, 88 (09): : 703 - 710
  • [33] CNN-Based Signal Detection for Banded Linear Systems
    Fan, Congmin
    Yuan, Xiaojun
    Zhang, Ying-Jun
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (09) : 4394 - 4407
  • [34] Deep CNN-based Pedestrian Detection for Intelligent Infrastructure
    Tarchoun, Bilel
    Jegham, Imen
    Ben Khalifa, Anouar
    Alouani, Ihsen
    Mahjoub, Mohamed Ali
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [35] CNN-based Burst Signal Detection with Covariance Matrix
    Seo, Dongho
    Park, Jiyeon
    Rajendran, Sreeraj
    Pollin, Sofie
    Nam, Haewoon
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 470 - 473
  • [36] A CNN-Based Wearable System for Driver Drowsiness Detection
    Li, Yongkai
    Zhang, Shuai
    Zhu, Gancheng
    Huang, Zehao
    Wang, Rong
    Duan, Xiaoting
    Wang, Zhiguo
    SENSORS, 2023, 23 (07)
  • [37] CNN-Based Model for Pose Detection of Industrial PCB
    Li Haochen
    Zheng Bin
    Sun Xiaoyong
    Zhao Yongting
    2017 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2017), 2017, : 390 - 393
  • [38] CNN-Based Shot Boundary Detection and Video Annotation
    Tong, Wenjing
    Song, Li
    Yang, Xiaokang
    Qu, Hui
    Xie, Rong
    2015 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2015,
  • [39] An Encoding Technique for CNN-based Network Anomaly Detection
    Kim, Taejoon
    Suh, Sang C.
    Kim, Hyunjoo
    Kim, Jonghyun
    Kim, Jinoh
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2960 - 2965
  • [40] A new CNN-based method for detection of symmetry axis
    Costantini, G.
    Casali, D.
    Perfetti, R.
    PROCEEDINGS OF THE 2006 10TH IEEE INTERNATIONAL WORKSHOP ON CELLULAR NEURAL NETWORKS AND THEIR APPLICATIONS, 2006, : 206 - +