Stacked CNN-based multichannel attention networks for Alzheimer disease detection

被引:0
|
作者
Hassan, Najmul [1 ]
Miah, Abu Saleh Musa [1 ]
Suzuki, Kota [1 ]
Okuyama, Yuichi [1 ]
Shin, Jungpil [1 ]
机构
[1] Univ Aizu, Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima 9650006, Japan
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Alzheimer's Disease; Convolutional neural network (CNN); Stack CNN; SCCAN; Neurological Disease; Brain Disease; MRI; ADNI; Channel Attention network; CONVOLUTIONAL NEURAL-NETWORK; DEEP LEARNING-MODEL; CLASSIFICATION; DIAGNOSIS; DEMENTIA;
D O I
10.1038/s41598-025-85703-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's Disease (AD) is a progressive condition of a neurological brain disorder recognized by symptoms such as dementia, memory loss, alterations in behaviour, and impaired reasoning abilities. Recently, many researchers have been working to develop an effective AD recognition system using deep learning (DL) based convolutional neural network (CNN) model aiming to deploy the automatic medical image diagnosis system. The existing system is still facing difficulties in achieving satisfactory performance in terms of accuracy and efficiency because of the lack of feature ineffectiveness. This study proposes a lightweight Stacked Convolutional Neural Network with a Channel Attention Network (SCCAN) for MRI based on AD classification to overcome the challenges. In the procedure, we sequentially integrate 5 CNN modules, which form a stack CNN aiming to generate a hierarchical understanding of features through multi-level extraction, effectively reducing noise and enhancing the weight's efficacy. This feature is then fed into a channel attention module to select the practical features based on the channel dimension, facilitating the selection of influential features. . Consequently, the model exhibits reduced parameters, making it suitable for training on smaller datasets. Addressing the class imbalance in the Kaggle MRI dataset, a balanced distribution of samples among classes is emphasized. Extensive experiments of the proposed model with the ADNI1 Complete 1Yr 1.5T, Kaggle, and OASIS-1 datasets showed 99.58%, 99.22%, and 99.70% accuracy, respectively. The proposed model's high performance surpassed state-of-the-art (SOTA) models and proved its excellence as a significant advancement in AD classification using MRI images.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] CNN-BASED TARGET DETECTION IN HYPERSPECTRAL IMAGERY
    Du, Jinming
    Li, Zhiyong
    Sun, Hao
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2761 - 2764
  • [22] CNN-Based Microaneurysm Detection in Fundus Images
    Zhao, Xuegong
    Deng, Jiakun
    Wei, Haoran
    Peng, Zhenming
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2021, 50 (06): : 915 - 920
  • [23] A CNN-based misleading video detection model
    Li, Xiaojun
    Xiao, Xvhao
    Li, Jia
    Hu, Changhua
    Yao, Junping
    Li, Shaochen
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [24] Mulberry Leaf Disease Detection Using CNN-Based Smart Android Application
    Salam, Abdus
    Naznine, Mansura
    Jahan, Nusrat
    Nahid, Emama
    Nahiduzzaman, Md
    Chowdhury, Muhammad E. H.
    IEEE ACCESS, 2024, 12 : 83575 - 83588
  • [25] Deep CNN ResNet-18 based model with attention and transfer learning for Alzheimer's disease detection
    Francis, Sofia Biju
    Verma, Jai Prakash
    FRONTIERS IN NEUROINFORMATICS, 2025, 18
  • [26] A CNN-BASED MULTICHANNEL INTERFEROMETRIC PHASE DENOISING METHOD APPLIED TO TOMOSAR IMAGING
    Li, Jie
    Xu, Zhongqiu
    Li, Zhiyuan
    Zhang, Bingchen
    Wu, Yirong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3448 - 3451
  • [27] CNN-Based Semantic Change Detection in Satellite Imagery
    Gupta, Ananya
    Welburn, Elisabeth
    Watson, Simon
    Yin, Hujun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 669 - 684
  • [28] CNN-Based Traffic Volume Video Detection Method
    Chen, Tao
    Li, Xuchuan
    Guo, Congshuai
    Fan, Linkun
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 2435 - 2445
  • [29] CNN-based Mitosis Detection for Assisting Doctors to Diagnosis
    Bai, Yu
    Liu, Jiwei
    Liu, Jianfei
    Zhao, Zhewei
    Mao, Ronghu
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2018,
  • [30] CNN-based temporal detection of motion saliency in videos
    Maczyta, Leo
    Bouthemy, Patrick
    Le Meur, Olivier
    PATTERN RECOGNITION LETTERS, 2019, 128 : 298 - 305