Comparing Care Pathways Between COVID-19 Pandemic Waves Using Electronic Health Records: A Process Mining Case Study

被引:0
|
作者
Georgiev, Konstantin [1 ]
Fleuriot, Jacques D. [2 ]
Papapanagiotou, Petros
Mcpeake, Joanne [3 ]
Shenkin, Susan D. [4 ,5 ]
Anand, Atul [1 ]
机构
[1] Univ Edinburgh, BHF Ctr Cardiovasc Sci, Chancellors Bldg, Edinburgh EH16 4TJ, Scotland
[2] Univ Edinburgh, Artificial Intelligence & Its Applicat Inst, Sch Informat, Edinburgh EH8 9BT, Scotland
[3] Univ Cambridge, Healthcare Improvement Studies Inst, Dept Publ Hlth & Primary Care, Cambridge CB1 8RN, England
[4] Univ Edinburgh, Ageing & Hlth Res Grp, Edinburgh EH16 4UX, Scotland
[5] Univ Edinburgh, Usher Inst, Adv Care Res Ctr, Edinburgh EH16 4UX, Scotland
关键词
COVID-19; Process mining; Electronic health records; Care pathways; Conformance checking; Health services;
D O I
10.1007/s41666-024-00181-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The COVID-19 pandemic caused rapid shifts in the workflow of many health services, but evidence of how this affected multidisciplinary care settings is limited. In this data study, we propose a process mining approach that utilises timestamped data from electronic health records to compare care provider patterns across pandemic waves. To investigate healthcare patterns during the pandemic, we collected routine events from Scottish hospital episodes in adults with COVID-19 status, generating treatment logs based on care provider input. Conformance checking metrics were used to select the Inductive Miner infrequent (IMi) algorithm for downstream analysis. Visual diagrams from the discovered Petri Nets indicated interactions on provider- and activity-level data subsets. Measures of "cross-log conformance checking" and graph edit distance (GED) further quantified variation in care complexity in adverse subgroups. Our baseline cohort included 1153 patients with COVID-19 linked to 55,212 relevant care provider events. At the conformance checking stage, the IMi model achieved good log fitness (LF<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{LF }$$\end{document}=0.95\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=0.95$$\end{document}) and generalisation (G<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{G }$$\end{document}=0.89\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=0.89$$\end{document}), but limited precision (PR<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{PR }$$\end{document}=0.27\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=0.27$$\end{document}) across all granularity levels. More structured care procedures were present in Wave 1, compared to limited multidisciplinary involvement in Wave 2. Care activities differed in patients with extended stay (GED=348,PR<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GED=348, \overline{ PR }$$\end{document}=0.231\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=0. 231$$\end{document}vsGED=197,PR<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GED=197, \overline{PR }$$\end{document}=0.429\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=0.429$$\end{document} in shorter stays). We demonstrated that process mining can be incorporated to investigate differential complexity in patients with COVID-19 and derive fine-grained evidence on shifts in healthcare practice. Future process-driven studies could use clinical oversight to understand operational adherence and driving factors behind service changes during pressured periods.
引用
收藏
页码:41 / 66
页数:26
相关论文
共 50 条
  • [1] COVID-19 pandemic and the judicialization of health care: an explanatory case study
    Carvalho, Eloa Carneiro
    Dantas de Oliveira Souza, Pedro Hugo
    Mo y Mo Loureiro Varella, Thereza Christina
    Dantas de Oliveira Souza, Norma Valeria
    Pereira de Farias, Sheila Nascimento
    Santos Soares, Samira Silva
    REVISTA LATINO-AMERICANA DE ENFERMAGEM, 2020, 28
  • [2] Gaps in psychiatric care before and after the COVID-19 pandemic among patients with depression using electronic health records
    Ettman, Catherine K.
    Brantner, Carly Lupton
    Goicoechea, Elena Badillo
    Dohlman, Priya
    V. Ringlein, Grace
    Straub, Jason
    Sthapit, Sazal
    Mojtabai, Ramin
    Spivak, Stanislav
    Albert, Michael
    Goes, Fernando S.
    Stuart, Elizabeth A.
    Zandi, Peter P.
    PSYCHIATRY RESEARCH, 2025, 344
  • [3] A comprehensive benchmark for COVID-19 predictive modeling using electronic health records in intensive care
    Gao, Junyi
    Zhu, Yinghao
    Wang, Wenqing
    Wang, Zixiang
    Dong, Guiying
    Tang, Wen
    Wang, Hao
    Wang, Yasha
    Harrison, Ewen M.
    Ma, Liantao
    PATTERNS, 2024, 5 (04):
  • [4] Predict Pregnancy Outcomes in the COVID-19 Pandemic Using Electronic Health Records and Machine Learning Approach
    Lyu, Tianchu
    Liang, Chen
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 483 - 483
  • [5] COVID-19 outbreaks surveillance through text mining applied to electronic health records
    Hermano Alexandre Lima Rocha
    Erik Zarko Macêdo Solha
    Vasco Furtado
    Francion Linhares Justino
    Lucas Arêa Leão Barreto
    Ronaldo Guedes da Silva
    Ítalo Martins de Oliveira
    David Westfall Bates
    Luciano Pamplona de Góes Cavalcanti
    Antônio Silva Lima Neto
    Erneson Alves de Oliveira
    BMC Infectious Diseases, 24
  • [6] Exploring Sentiment and Care Management of Hospitalized Patients During the First Wave of the COVID-19 Pandemic Using Electronic Nursing Health Records: Descriptive Study
    Nicolas Cuenca-Zaldivar, Juan
    Torrente-Regidor, Maria
    Martin-Losada, Laura
    Fernandez-De-las-Penas, Cesar
    Lima Florencio, Lidiane
    Alexandre Sousa, Pedro
    Palacios-Cena, Domingo
    JMIR MEDICAL INFORMATICS, 2022, 10 (05)
  • [7] Characterizing cancer and COVID-19 outcomes using electronic health records
    Kim, Youngran
    Zhu, Liang
    Zhu, Huili
    Li, Xiaojin
    Huang, Yan
    Gu, Chunhui
    Bush, Heather
    Chung, Caroline
    Zhang, Guo-Qiang
    PLOS ONE, 2022, 17 (05):
  • [8] Comparing associations between frailty and mortality in hospitalised older adults with or without COVID-19 infection: a retrospective observational study using electronic health records
    Owen, Rhiannon K.
    Conroy, Simon P.
    Taub, Nicholas
    Jones, Will
    Bryden, Daniele
    Pareek, Manish
    Faull, Christina
    Abrams, Keith R.
    Davis, Daniel
    Banerjee, Jay
    AGE AND AGEING, 2021, 50 (02) : 307 - 316
  • [9] COVID-19 pandemic impact on hypertension management in North East London: an observational cohort study using electronic health records
    Rison, Stuart Christopher Gorthorn
    Redfern, Oliver C.
    Mathur, Rohini
    Dostal, Isabel
    Carvalho, Chris
    Raisi-Estabragh, Zahra
    Robson, John
    BMJ OPEN, 2024, 14 (08):
  • [10] Using Electronic Health Records to Mitigate Workplace Burnout Among Clinicians During the COVID-19 Pandemic: Field Study in Iran
    Esmaeilzadeh, Pouyan
    Mirzaei, Tala
    JMIR MEDICAL INFORMATICS, 2021, 9 (06)