Comparing Care Pathways Between COVID-19 Pandemic Waves Using Electronic Health Records: A Process Mining Case Study

被引:0
|
作者
Georgiev, Konstantin [1 ]
Fleuriot, Jacques D. [2 ]
Papapanagiotou, Petros
Mcpeake, Joanne [3 ]
Shenkin, Susan D. [4 ,5 ]
Anand, Atul [1 ]
机构
[1] Univ Edinburgh, BHF Ctr Cardiovasc Sci, Chancellors Bldg, Edinburgh EH16 4TJ, Scotland
[2] Univ Edinburgh, Artificial Intelligence & Its Applicat Inst, Sch Informat, Edinburgh EH8 9BT, Scotland
[3] Univ Cambridge, Healthcare Improvement Studies Inst, Dept Publ Hlth & Primary Care, Cambridge CB1 8RN, England
[4] Univ Edinburgh, Ageing & Hlth Res Grp, Edinburgh EH16 4UX, Scotland
[5] Univ Edinburgh, Usher Inst, Adv Care Res Ctr, Edinburgh EH16 4UX, Scotland
关键词
COVID-19; Process mining; Electronic health records; Care pathways; Conformance checking; Health services;
D O I
10.1007/s41666-024-00181-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The COVID-19 pandemic caused rapid shifts in the workflow of many health services, but evidence of how this affected multidisciplinary care settings is limited. In this data study, we propose a process mining approach that utilises timestamped data from electronic health records to compare care provider patterns across pandemic waves. To investigate healthcare patterns during the pandemic, we collected routine events from Scottish hospital episodes in adults with COVID-19 status, generating treatment logs based on care provider input. Conformance checking metrics were used to select the Inductive Miner infrequent (IMi) algorithm for downstream analysis. Visual diagrams from the discovered Petri Nets indicated interactions on provider- and activity-level data subsets. Measures of "cross-log conformance checking" and graph edit distance (GED) further quantified variation in care complexity in adverse subgroups. Our baseline cohort included 1153 patients with COVID-19 linked to 55,212 relevant care provider events. At the conformance checking stage, the IMi model achieved good log fitness (LF<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{LF }$$\end{document}=0.95\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=0.95$$\end{document}) and generalisation (G<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{G }$$\end{document}=0.89\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=0.89$$\end{document}), but limited precision (PR<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{PR }$$\end{document}=0.27\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=0.27$$\end{document}) across all granularity levels. More structured care procedures were present in Wave 1, compared to limited multidisciplinary involvement in Wave 2. Care activities differed in patients with extended stay (GED=348,PR<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GED=348, \overline{ PR }$$\end{document}=0.231\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=0. 231$$\end{document}vsGED=197,PR<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GED=197, \overline{PR }$$\end{document}=0.429\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=0.429$$\end{document} in shorter stays). We demonstrated that process mining can be incorporated to investigate differential complexity in patients with COVID-19 and derive fine-grained evidence on shifts in healthcare practice. Future process-driven studies could use clinical oversight to understand operational adherence and driving factors behind service changes during pressured periods.
引用
收藏
页码:41 / 66
页数:26
相关论文
共 50 条
  • [31] Impact of the COVID-19 Pandemic on Primary Health Care
    Laura Macias, Andrea
    REVISTA COLOMBIANA DE BIOETICA, 2022, 17 (01):
  • [32] UTILISING ELECTRONIC HEALTH RECORDS TO PRIORITISE PATIENTS RECEIVING VENESECTION FOR HAEMOCHROMATOSIS FOLLOWING THE COVID-19 PANDEMIC
    Driver, Robert
    Orange, Dawn
    GUT, 2022, 71 : A24 - A24
  • [33] Cardiovascular Health Care Implications of the COVID-19 pandemic
    Raisi-Estabragh, Zahra
    Mamas, Mamas A.
    HEART FAILURE CLINICS, 2023, 19 (02) : 265 - 272
  • [34] Health care disparities during the COVID-19 pandemic
    Andraska, Elizabeth Ann
    Alabi, Olamide
    Dorsey, Chelsea
    Erben, Young
    Velazquez, Gabriela
    Franco-Mesa, Camila
    Sachdeu, Ulka
    SEMINARS IN VASCULAR SURGERY, 2021, 34 (03) : 82 - 88
  • [35] Telemedicine and humanization of health care in the Covid-19 pandemic
    Sevilla-Fuentes, Samuel
    Luisa Hernandez-Medel, Maria
    SALUD PUBLICA DE MEXICO, 2020, 62 (05): : 459 - 461
  • [36] Health diagnosis associated with COVID-19 death in the United States: A retrospective cohort study using electronic health records
    Joseph, Mariam
    Li, Qiwei
    Shin, Sunyoung
    PLOS ONE, 2025, 20 (03):
  • [37] Understanding hospital rehabilitation using electronic health records in patients with and without COVID-19
    Georgiev, Konstantin
    Doudesis, Dimitrios
    McPeake, Joanne
    Mills, Nicholas L.
    Fleuriot, Jacques
    Shenkin, Susan D.
    Anand, Atul
    BMC HEALTH SERVICES RESEARCH, 2024, 24 (01)
  • [38] Optimizing COVID-19 surveillance using historical electronic health records of influenza infections
    Du, Zhanwei
    Bai, Yuan
    Wang, Lin
    Herrera-Diestra, Jose L.
    Yuan, Zhilu
    Guo, Renzhong
    Cowling, Benjamin J.
    Meyers, Lauren A.
    Holme, Petter
    PNAS NEXUS, 2022, 1 (02):
  • [39] Primary Health Care Case-Management Nurses during the COVID-19 Pandemic: A Qualitative Study
    Molina-Gil, Maria Jose
    Guerra-Martin, Maria Dolores
    De Diego-Cordero, Rocio
    NURSING REPORTS, 2024, 14 (02) : 1119 - 1128
  • [40] Using the Experiences and Perceptions of Health Care Workers to Improve the Health Care Response to the COVID-19 Pandemic
    Lieu Thi Thuy Trinh
    Stubbs, Joanne M.
    Gilroy, Nicole
    Schindeler, Suzanne
    Achat, Helen
    WORKPLACE HEALTH & SAFETY, 2022, 70 (11) : 500 - 508