Advancing Turbine Prediction: Harnessing Conformable Artificial Neural Networks for the Fracture Analysis

被引:0
|
作者
J. A. Rodríguez [1 ]
A. Mata [2 ]
E. Galindo [2 ]
J. I. Johnson [2 ]
J. A. Hernández [1 ]
机构
[1] Universidad Autonoma del Estado de Morelos,Centro de Investigacion en Ingenieria y Ciencias Aplicadas (CIICAp
[2] Universidad Autonoma del Estado de Morelos,IICBA)
关键词
Conformable transfer functions; Artificial neuronal network; Blade damage; Blade fracturing; Steam turbines;
D O I
10.1007/s11668-024-02087-2
中图分类号
学科分类号
摘要
In this research, an innovative approach was developed using Conformable Artificial Neural Networks (CANN) for detecting and predicting fractures in gas turbine blades made of AISI 410 stainless steel. The methodology integrates conformable transfer functions with advanced modeling and statistical analysis techniques to accurately predict the value of the J-integral, a critical metric in evaluating the resistance of materials to crack propagation. Experimental data collected through fatigue testing were used to train and validate models with various transfer function configurations. The results show superior accuracy in the predictions of the CANN model, reaching a correlation coefficient of 0.99992, an RMSE of 0.00219, and a MAPE of 0.21589. This research represents a significant contribution toward predictive maintenance and efficient management of gas turbines, optimizing safety and operational sustainability in thermal power plants.
引用
收藏
页码:357 / 369
页数:12
相关论文
共 50 条
  • [31] Prediction of the power ratio and torque in wind turbine Savonius rotors using artificial neural networks
    Sargolzaei, J.
    LECTURE NOTES ON ENERGY AND ENVIRONMENT, 2007, : 7 - +
  • [32] Conformable Fractional Models of the Stellar Helium Burning via Artificial Neural Networks
    Abdel-Salam, Emad A-B
    Nouh, Mohamed, I
    Azzam, Yosry A.
    Jazmati, M. S.
    ADVANCES IN ASTRONOMY, 2021, 2021
  • [33] APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO BOILER AND TURBINE CONTROL
    Lichota, Janusz
    Grabowski, Maciej
    RYNEK ENERGII, 2010, (01): : 99 - 107
  • [34] Application of artificial neural networks to fracture analysis at the Aspo HRL, Sweden: fracture sets classification
    Sirat, M
    Talbot, CJ
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2001, 38 (05) : 621 - 639
  • [35] Prediction of water quality indices by regression analysis and artificial neural networks
    Rene, E. R.
    Saidutta, M. B.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH, 2008, 2 (02) : 183 - 188
  • [36] Prediction of Back Break Using Sensitivity Analysis and Artificial Neural Networks
    Sravan Kumar Kannavena
    T. Pradeep
    N. Sri Chandrahas
    D. U. V. D. Prasad
    Journal of The Institution of Engineers (India): Series D, 2025, 106 (1) : 383 - 398
  • [37] Fracture-frequency prediction from borehole wireline logs using artificial neural networks
    FitzGerald, EM
    Bean, CJ
    Reilly, R
    GEOPHYSICAL PROSPECTING, 1999, 47 (06) : 1031 - 1044
  • [38] PREDICTION OF FRACTURE TOUGHNESS TRANSITION FROM TENSILE TEST PARAMETERS APPLYING ARTIFICIAL NEURAL NETWORKS
    Dlouhy, I.
    Hadraba, H.
    Chlup, Z.
    Kozak, V.
    Smida, T.
    NEW METHODS OF DAMAGE AND FAILURE ANALYSIS OF STRUCTURAL PARTS, 2010, 2010, : 207 - 215
  • [39] Yield Prediction Using Artificial Neural Networks
    Baral, Seshadri
    Tripathy, Asis Kumar
    Bijayasingh, Pritiranjan
    COMPUTER NETWORKS AND INFORMATION TECHNOLOGIES, 2011, 142 : 315 - +
  • [40] Ship Resistance Prediction with Artificial Neural Networks
    Grabowska, K.
    Szczuko, P.
    SPA 2015 SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS, 2015, : 168 - 173