Advancing Turbine Prediction: Harnessing Conformable Artificial Neural Networks for the Fracture Analysis

被引:0
|
作者
J. A. Rodríguez [1 ]
A. Mata [2 ]
E. Galindo [2 ]
J. I. Johnson [2 ]
J. A. Hernández [1 ]
机构
[1] Universidad Autonoma del Estado de Morelos,Centro de Investigacion en Ingenieria y Ciencias Aplicadas (CIICAp
[2] Universidad Autonoma del Estado de Morelos,IICBA)
关键词
Conformable transfer functions; Artificial neuronal network; Blade damage; Blade fracturing; Steam turbines;
D O I
10.1007/s11668-024-02087-2
中图分类号
学科分类号
摘要
In this research, an innovative approach was developed using Conformable Artificial Neural Networks (CANN) for detecting and predicting fractures in gas turbine blades made of AISI 410 stainless steel. The methodology integrates conformable transfer functions with advanced modeling and statistical analysis techniques to accurately predict the value of the J-integral, a critical metric in evaluating the resistance of materials to crack propagation. Experimental data collected through fatigue testing were used to train and validate models with various transfer function configurations. The results show superior accuracy in the predictions of the CANN model, reaching a correlation coefficient of 0.99992, an RMSE of 0.00219, and a MAPE of 0.21589. This research represents a significant contribution toward predictive maintenance and efficient management of gas turbines, optimizing safety and operational sustainability in thermal power plants.
引用
收藏
页码:357 / 369
页数:12
相关论文
共 50 条
  • [21] ARTIFICIAL NEURAL NETWORKS FOR TOXICITY PREDICTION
    Partridge, M.
    Buettner, F.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S107 - S107
  • [22] Artificial neural networks for streamflow prediction
    Dolling, OR
    Varas, EA
    JOURNAL OF HYDRAULIC RESEARCH, 2002, 40 (05) : 547 - 554
  • [23] Artificial neural networks in outcome prediction
    Lundin, J
    ANNALES CHIRURGIAE ET GYNAECOLOGIAE, 1998, 87 (02) : 128 - 130
  • [24] Allergenicity prediction by artificial neural networks
    Dimitrov, Ivan
    Naneva, Lyudmila
    Bangov, Ivan
    Doytchinova, Irini
    JOURNAL OF CHEMOMETRICS, 2014, 28 (04) : 282 - 286
  • [25] Prediction intervals for artificial neural networks
    Hwang, JTG
    Ding, AA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 748 - 757
  • [26] Bankruptcy prediction with Artificial Neural Networks
    Fernandez, E
    Olmeda, I
    FROM NATURAL TO ARTIFICIAL NEURAL COMPUTATION, 1995, 930 : 1142 - 1146
  • [27] PREDICTION BENCHMARK OF ARTIFICIAL NEURAL NETWORKS
    Samek, David
    ANNALS OF DAAAM FOR 2009 & PROCEEDINGS OF THE 20TH INTERNATIONAL DAAAM SYMPOSIUM, 2009, 20 : 621 - 622
  • [28] Harnessing the potential of artificial neural networks for predicting protein glycosylation
    Kotidis, Pavlos
    Kontoravdi, Cleo
    METABOLIC ENGINEERING COMMUNICATIONS, 2020, 10
  • [29] Fatigue prediction and optimization of laser peened turbine blade using artificial neural networks and ANFIS
    Ayeb, Manel
    Turki, Mourad
    Frija, Mounir
    Fathallah, Raouf
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (11) : 4030 - 4047
  • [30] Prediction of operating parameters and output power of ducted wind turbine using artificial neural networks
    Taghinezhad, Javad
    Sheidaei, Samira
    ENERGY REPORTS, 2022, 8 : 3085 - 3095