Deep learning-based evaluation of panoramic radiographs for osteoporosis screening: a systematic review and meta-analysis

被引:0
|
作者
Tarighatnia, Ali [1 ]
Amanzadeh, Masoud [2 ]
Hamedan, Mahnaz [2 ]
Mohammadnia, Alireza [2 ]
Nader, Nader D. [3 ]
机构
[1] Ardabil Univ Med Sci, Sch Med, Dept Med Phys, Ardebil, Iran
[2] Ardabil Univ Med Sci, Sch Med, Dept Hlth Informat Management, Ardebil, Iran
[3] Univ Buffalo, Jacobs Sch Med & Biomed Sci, Dept Anesthesiol, Buffalo, NY USA
来源
BMC MEDICAL IMAGING | 2025年 / 25卷 / 01期
关键词
Osteoporosis; Panoramic radiography; Deep learning; OPG; Diagnosis; EXTERNAL VALIDATION;
D O I
10.1186/s12880-025-01626-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundOsteoporosis is a complex condition that drives research into its causes, diagnosis, treatment, and prevention, significantly affecting patients and healthcare providers in various aspects of life. Research is exploring orthopantomogram (OPG) radiography for osteoporosis screening instead of bone mineral density (BMD) assessments. Although this method uses various indicators, manual analysis can be challenging. Machine learning and deep learning techniques have been developed to address this. This systematic review and meta-analysis is the first to evaluate the accuracy of deep learning models in predicting osteoporosis from OPG radiographs, providing evidence for their performance and clinical use.MethodsA literature search was conducted in MEDLINE, Scopus, and Web of Science up to February 10, 2025, using the keywords related to deep learning, osteoporosis, and panoramic radiography. We conducted title, abstract, and full-text screening based on inclusion/exclusion criteria. Meta-analysis was performed using a bivariate random-effects model to pool diagnostic accuracy measures, and subgroup analyses explored sources of heterogeneity.ResultsWe found 204 articles, removed 189 duplicates and irrelevant studies, assessed 15articles, and ultimately, seven studies were selected. The DL models showed AUC values of 66.8-99.8%, with sensitivity and specificity ranging from 59 to 97% and 64.9-100%, respectively. No significant differences in diagnostic accuracy were found among subgroups. AlexNet had the highest performance, achieving a sensitivity of 0.89 and a specificity of 0.99. Sensitivity analysis revealed that excluding outliers had little impact on the results. Deeks' funnel plot indicated no significant publication bias (P = 0.54).ConclusionsThis systematic review indicates that deep learning models for osteoporosis diagnosis achieved 80% sensitivity, 92% specificity, and 93% AUC. Models like AlexNet and ResNet demonstrate effectiveness. These findings suggest that DL models are promising for noninvasive early detection, but more extensive multicenter studies are necessary to validate their efficacy in at-risk groups.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Deep Learning-Based Semantic Segmentation of Urban Features in Satellite Images: A Review and Meta-Analysis
    Neupane, Bipul
    Horanont, Teerayut
    Aryal, Jagannath
    REMOTE SENSING, 2021, 13 (04) : 1 - 41
  • [32] Deep Learning-Based Image Classification and Segmentation on Digital Histopathology for Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis
    Pirayesh, Zeynab
    Mohammad-Rahimi, Hossein
    Ghasemi, Nikoo
    Motamedian, Saeed-Reza
    Sadeghi, Terme Sarrafan
    Koohi, Hediye
    Rokhshad, Rata
    Lotfi, Shima Moradian
    Najafi, Anahita
    Alajaji, Shahd A.
    Khoury, Zaid H.
    Jessri, Maryam
    Sultan, Ahmed S.
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2024, 53 (09) : 551 - 566
  • [33] Machine learning-based antibiotic resistance prediction models: An updated systematic review and meta-analysis
    Lv, Guodong
    Wang, Yuntao
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (05) : 2865 - 2882
  • [34] Diagnostic Accuracy of Machine Learning-Based Radiomics in Grading Gliomas: Systematic Review and Meta-Analysis
    Sohn, Curtis K.
    Bisdas, Sotirios
    CONTRAST MEDIA & MOLECULAR IMAGING, 2020, 2020
  • [35] Opportunistic screening of osteoporosis by CT scan compared to DXA: A systematic review and meta-analysis
    Mousavi, Seyedeh Zahra
    Moshfeghinia, Reza
    Vardanjani, Hossein Molavi
    Sasani, Mohammad Reza
    Vardanjani, H. M.
    CLINICAL IMAGING, 2025, 118
  • [36] Deep learning for cephalometric landmark detection: systematic review and meta-analysis
    Schwendicke, Falk
    Chaurasia, Akhilanand
    Arsiwala, Lubaina
    Lee, Jae-Hong
    Elhennawy, Karim
    Jost-Brinkmann, Paul-Georg
    Demarco, Flavio
    Krois, Joachim
    CLINICAL ORAL INVESTIGATIONS, 2021, 25 (07) : 4299 - 4309
  • [37] Deep learning for cephalometric landmark detection: systematic review and meta-analysis
    Falk Schwendicke
    Akhilanand Chaurasia
    Lubaina Arsiwala
    Jae-Hong Lee
    Karim Elhennawy
    Paul-Georg Jost-Brinkmann
    Flavio Demarco
    Joachim Krois
    Clinical Oral Investigations, 2021, 25 : 4299 - 4309
  • [38] Deep learning for temporomandibular joint arthropathies: A systematic review and meta-analysis
    Rokhshad, Rata
    Mohammad-Rahimi, Hossein
    Sohrabniya, Fatemeh
    Jafari, Bahare
    Shobeiri, Parnian
    Tsolakis, Ioannis A.
    Ourang, Seyed AmirHossein
    Sultan, Ahmed S.
    Khawaja, Shehryar Nasir
    Bavarian, Roxanne
    Palomo, Juan Martin
    JOURNAL OF ORAL REHABILITATION, 2024, 51 (08) : 1632 - 1644
  • [39] Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis
    Soffer, Shelly
    Klang, Eyal
    Shimon, Orit
    Nachmias, Noy
    Eliakim, Rami
    Ben-Horin, Shomron
    Kopylov, Uri
    Barash, Yiftach
    GASTROINTESTINAL ENDOSCOPY, 2020, 92 (04) : 831 - +
  • [40] Deep learning and machine learning in CT-based COPD diagnosis: Systematic review and meta-analysis
    Wu, Qian
    Guo, Hui
    Li, Ruihan
    Han, Jinhuan
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 196