Double-loop importance sampling for McKean-Vlasov stochastic differential equation

被引:1
|
作者
Ben Rached, Nadhir [1 ]
Haji-Ali, Abdul-Lateef [2 ]
Pillai, Shyam Mohan Subbiah [3 ]
Tempone, Raul [4 ,5 ]
机构
[1] Univ Leeds, Dept Stat, Sch Math, Leeds, England
[2] Heriot Watt Univ, Sch Math & Comp Sci, Dept Actuarial Math & Stat, Edinburgh, Scotland
[3] Rhein Westfal TH Aachen, Dept Math, Chair Math Uncertainty Quantificat, Aachen, Germany
[4] KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal, Saudi Arabia
[5] Rhein Westfal TH Aachen, Alexander von Humboldt Prof Math Uncertainty Quant, Aachen, Germany
关键词
McKean-Vlasov stochastic differential equation; Importance sampling; Rare events; Stochastic optimal control; Decoupling approach; Double loop Monte Carlo; KURAMOTO MODEL; SYNCHRONIZATION; APPROXIMATION; MULTILEVEL; SIMULATION; REDUCTION; SDES;
D O I
10.1007/s11222-024-10497-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates Monte Carlo (MC) methods to estimate probabilities of rare events associated with the solution to the d-dimensional McKean-Vlasov stochastic differential equation (MV-SDE). MV-SDEs are usually approximated using a stochastic interacting P-particle system, which is a set of P coupled d-dimensional stochastic differential equations (SDEs). Importance sampling (IS) is a common technique for reducing high relative variance of MC estimators of rare-event probabilities. We first derive a zero-variance IS change of measure for the quantity of interest by using stochastic optimal control theory. However, when this change of measure is applied to stochastic particle systems, it yields a Pxd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \times d$$\end{document}-dimensional partial differential control equation (PDE), which is computationally expensive to solve. To address this issue, we use the decoupling approach introduced in (dos Reis et al. 2023), generating a d-dimensional control PDE for a zero-variance estimator of the decoupled SDE. Based on this approach, we develop a computationally efficient double loop MC (DLMC) estimator. We conduct a comprehensive numerical error and work analysis of the DLMC estimator. As a result, we show optimal complexity of OTOLr-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}\left( \textrm{TOL}_{\textrm{r}}<^>{-4}\right) $$\end{document} with a significantly reduced constant to achieve a prescribed relative error tolerance TOLr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{TOL}_{\textrm{r}}$$\end{document}. Subsequently, we propose an adaptive DLMC method combined with IS to numerically estimate rare-event probabilities, substantially reducing relative variance and computational runtimes required to achieve a given TOLr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{TOL}_{\textrm{r}}$$\end{document} compared with standard MC estimators in the absence of IS. Numerical experiments are performed on the Kuramoto model from statistical physics.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Macroscopic limits for stochastic partial differential equations of McKean-Vlasov type
    Kotelenez, Peter M.
    Kurtz, Thomas G.
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 146 (1-2) : 189 - 222
  • [32] On ergodic measures for McKean-Vlasov stochastic equations
    Veretennikov, AY
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2004, 2006, : 471 - 486
  • [33] Convergence to equilibrium for a degenerate McKean-Vlasov equation
    Duong, Manh Hong
    Einav, Amit
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (12)
  • [34] Stochastic averaging principle for multi-valued McKean-Vlasov stochastic differential equations
    Shen, Guangjun
    Xiang, Jie
    Wu, Jiang-Lun
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [35] HOUSEHOLD EPIDEMIC MODELS AND MCKEAN-VLASOV POISSON DRIVEN STOCHASTIC DIFFERENTIAL EQUATIONS
    Forien, Raphael
    Pardoux, Etienne
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (02): : 1210 - 1233
  • [36] EXPLICIT NUMERICAL APPROXIMATIONS FOR MCKEAN-VLASOV NEUTRAL STOCHASTIC DIFFERENTIAL DELAY EQUATIONS
    Cui, Yuanping
    Li, Xiaoyue
    Liu, Yi
    Yuan, Chenggui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (05): : 797 - 827
  • [37] Parameter Estimation of Path-Dependent McKean-Vlasov Stochastic Differential Equations
    Liu, Meiqi
    Qiao, Huijie
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 876 - 886
  • [38] Parameter Estimation of Path-Dependent McKean-Vlasov Stochastic Differential Equations
    Meiqi Liu
    Huijie Qiao
    Acta Mathematica Scientia, 2022, 42 : 876 - 886
  • [39] The Onsager-Machlup action functional for McKean-Vlasov stochastic differential equations
    Liu, Shanqi
    Gao, Hongjun
    Qiao, Huijie
    Lu, Nan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [40] FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND CONTROLLED MCKEAN-VLASOV DYNAMICS
    Carmona, Rene
    Delarue, Francois
    ANNALS OF PROBABILITY, 2015, 43 (05): : 2647 - 2700