Double-loop importance sampling for McKean-Vlasov stochastic differential equation

被引:1
|
作者
Ben Rached, Nadhir [1 ]
Haji-Ali, Abdul-Lateef [2 ]
Pillai, Shyam Mohan Subbiah [3 ]
Tempone, Raul [4 ,5 ]
机构
[1] Univ Leeds, Dept Stat, Sch Math, Leeds, England
[2] Heriot Watt Univ, Sch Math & Comp Sci, Dept Actuarial Math & Stat, Edinburgh, Scotland
[3] Rhein Westfal TH Aachen, Dept Math, Chair Math Uncertainty Quantificat, Aachen, Germany
[4] KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal, Saudi Arabia
[5] Rhein Westfal TH Aachen, Alexander von Humboldt Prof Math Uncertainty Quant, Aachen, Germany
关键词
McKean-Vlasov stochastic differential equation; Importance sampling; Rare events; Stochastic optimal control; Decoupling approach; Double loop Monte Carlo; KURAMOTO MODEL; SYNCHRONIZATION; APPROXIMATION; MULTILEVEL; SIMULATION; REDUCTION; SDES;
D O I
10.1007/s11222-024-10497-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates Monte Carlo (MC) methods to estimate probabilities of rare events associated with the solution to the d-dimensional McKean-Vlasov stochastic differential equation (MV-SDE). MV-SDEs are usually approximated using a stochastic interacting P-particle system, which is a set of P coupled d-dimensional stochastic differential equations (SDEs). Importance sampling (IS) is a common technique for reducing high relative variance of MC estimators of rare-event probabilities. We first derive a zero-variance IS change of measure for the quantity of interest by using stochastic optimal control theory. However, when this change of measure is applied to stochastic particle systems, it yields a Pxd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \times d$$\end{document}-dimensional partial differential control equation (PDE), which is computationally expensive to solve. To address this issue, we use the decoupling approach introduced in (dos Reis et al. 2023), generating a d-dimensional control PDE for a zero-variance estimator of the decoupled SDE. Based on this approach, we develop a computationally efficient double loop MC (DLMC) estimator. We conduct a comprehensive numerical error and work analysis of the DLMC estimator. As a result, we show optimal complexity of OTOLr-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}\left( \textrm{TOL}_{\textrm{r}}<^>{-4}\right) $$\end{document} with a significantly reduced constant to achieve a prescribed relative error tolerance TOLr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{TOL}_{\textrm{r}}$$\end{document}. Subsequently, we propose an adaptive DLMC method combined with IS to numerically estimate rare-event probabilities, substantially reducing relative variance and computational runtimes required to achieve a given TOLr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{TOL}_{\textrm{r}}$$\end{document} compared with standard MC estimators in the absence of IS. Numerical experiments are performed on the Kuramoto model from statistical physics.
引用
收藏
页数:25
相关论文
共 50 条
  • [11] Stability for Multivalued McKean-Vlasov Stochastic Differential Equations
    Qiao, Huijie
    Gong, Jun
    FRONTIERS OF MATHEMATICS, 2025,
  • [12] Stability of McKean-Vlasov stochastic differential equations and applications
    Bahlali, Khaled
    Mezerdi, Mohamed Amine
    Mezerdi, Brahim
    STOCHASTICS AND DYNAMICS, 2020, 20 (01)
  • [13] On a McKean-Vlasov stochastic integro-differential evolution equation of Sobolev-type
    Keck, DN
    McKibben, MA
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (05) : 1115 - 1139
  • [14] Approximations of McKean-Vlasov Stochastic Differential Equations with Irregular Coefficients
    Bao, Jianhai
    Huang, Xing
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (02) : 1187 - 1215
  • [15] A semilinear Mckean-Vlasov stochastic evolution equation in Hilbert space
    Ahmed, NU
    Ding, X
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 60 (01) : 65 - 85
  • [16] Multilevel Picard approximations for McKean-Vlasov stochastic differential equations
    Hutzenthaler, Martin
    Kruse, Thomas
    Nguyen, Tuan Anh
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [17] Compactification in optimal control of McKean-Vlasov stochastic differential equations
    Mezerdi, Mohamed Amine
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (04): : 1161 - 1177
  • [18] A difference method for the McKean-Vlasov equation
    Coclite, Giuseppe Maria
    Risebro, Nils Henrik
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [19] On a class of McKean-Vlasov stochastic functional differential equations with applications
    Wu, Fuke
    Xi, Fubao
    Zhu, Chao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 371 : 31 - 49
  • [20] Information upper bound for McKean-Vlasov stochastic differential equations
    Lv, Li
    Zhang, Yanjie
    Wang, Zibo
    CHAOS, 2021, 31 (05)