A modified lightweight quantum convolutional neural network for malicious code detection

被引:0
|
作者
Xiong, Qibing [1 ,2 ]
Fei, Yangyang [1 ]
Du, Qiming [1 ]
Zhao, Bo [1 ]
Di, Shiqin [1 ]
Shan, Zheng [1 ]
机构
[1] Informat Engn Univ, Zhengzhou 450000, Peoples R China
[2] Henan Police Coll, Zhengzhou 450000, Peoples R China
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2025年 / 10卷 / 01期
关键词
quantum computing; quantum machine learning; quantum convolutional neural network; malicious code detection;
D O I
10.1088/2058-9565/ad80bd
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum neural network fully utilize the respective advantages of quantum computing and classical neural network, providing a new path for the development of artificial intelligence. In this paper, we propose a modified lightweight quantum convolutional neural network (QCNN), which contains a high-scalability and parameterized quantum convolutional layer and a quantum pooling circuit with quantum bit multiplexing, effectively utilizing the computational advantages of quantum systems to accelerate classical machine learning tasks. The experimental results show that the classification accuracy (precision, F1-score) of this QCNN on DataCon2020, Ember and BODMAS have been improved to 96.65% (94.3%, 96.74%), 92.4% (91.01%, 92.53%) and 95.6% (91.99%, 95.78%), indicating that this QCNN has strong robustness as well as good generalization performance for malicious code detection, which is of great significance to cyberspace security.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Bidirectional LSTM Malicious webpages detection algorithm based on convolutional neural network and independent recurrent neural network
    Wang, Huan-huan
    Yu, Long
    Tian, Sheng-wei
    Peng, Yong-fang
    Pei, Xin-jun
    APPLIED INTELLIGENCE, 2019, 49 (08) : 3016 - 3026
  • [22] An efficient lightweight convolutional neural network for industrial surface defect detection
    Zhang, Dehua
    Hao, Xinyuan
    Wang, Dechen
    Qin, Chunbin
    Zhao, Bo
    Liang, Linlin
    Liu, Wei
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 10651 - 10677
  • [23] Application of Lightweight Convolutional Neural Network for Damage Detection of Conveyor Belt
    Zhang, Mengchao
    Zhang, Yuan
    Zhou, Manshan
    Jiang, Kai
    Shi, Hao
    Yu, Yan
    Hao, Nini
    APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [24] A Lightweight Convolutional Neural Network for Ship Target Detection in SAR Images
    Hao, Yisheng
    Zhang, Ying
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (02) : 1882 - 1898
  • [25] An efficient lightweight convolutional neural network for industrial surface defect detection
    Dehua Zhang
    Xinyuan Hao
    Dechen Wang
    Chunbin Qin
    Bo Zhao
    Linlin Liang
    Wei Liu
    Artificial Intelligence Review, 2023, 56 : 10651 - 10677
  • [26] A lightweight 3D convolutional neural network for deepfake detection
    Liu, Jiarui
    Zhu, Kaiman
    Lu, Wei
    Luo, Xiangyang
    Zhao, Xianfeng
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (09) : 4990 - 5004
  • [27] LightMixer: A novel lightweight convolutional neural network for tomato disease detection
    Zhong, Yi
    Teng, Zihan
    Tong, Mengjun
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [28] Lightweight convolutional neural network for bitemporal SAR image change detection
    Wang, Rongfang
    Ding, Fan
    Jiao, Licheng
    Chen, Jia-Wei
    Liu, Bo
    Ma, Wenping
    Wang, Mi
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (03)
  • [29] Indoor Video Flame Detection Based on Lightweight Convolutional Neural Network
    Zhikai Yang
    Leping Bu
    Teng Wang
    Peng Yuan
    Ouyang Jineng
    Pattern Recognition and Image Analysis, 2020, 30 : 551 - 564
  • [30] Automatic Detection of Retinal Diseases Based on Lightweight Convolutional Neural Network
    Wang Lingxiao
    Yang Jun
    Wang Wensai
    Li Ting
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (06)