Adaptive federated deep reinforcement learning for edge offloading in heterogeneous AGI-MEC networks

被引:0
|
作者
Fan, Chenchen [1 ]
Wang, Qingling [1 ]
机构
[1] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge offloading; Federated learning; Deep reinforcement learning; Air-ground integrated network; RESOURCE-ALLOCATION; DRL; OPTIMIZATION; UAVS;
D O I
10.1007/s10489-025-06486-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To support massive applications of mobile terminals (MTs), the combination of air-ground integrated (AGI) networks and mobile edge computing (MEC) technology has emerged. However, how to intelligently manage MTs to satisfy their performance requirements faces several challenges, such as the high communication burden of collaborative decision-making, real-time changes in environmental information, MT mobility, and heterogeneous performance requirements. To deal with these challenges, we propose an adaptive federated deep deterministic policy gradient (AFDDPG) algorithm tailored to the edge offloading problem. Specifically, an adaptive federated training framework is first constructed to acquire global knowledge by sharing model parameters instead of original data among agents. This framework enables the algorithm to maintain a low communication burden while achieving high solution accuracy. Then, a hybrid reward function is proposed to enhance the exploration intensity in the action space by jointly considering the group interests and the unique features of each agent. Accordingly, the convergence performance of the algorithm in complex environments with multiple constraints is improved. Subsequently, an adaptive local update method is presented, which generates personalized local models through biased model aggregation to cope with the heterogeneous requirements of MTs. Finally, the convergence of the proposed AFDDPG algorithm is analysed, and the effectiveness of the algorithm is demonstrated by extensive simulations.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Computation Offloading Based on Deep Reinforcement Learning for UAV-MEC Network
    Wan, Zheng
    Luo, Yuxuan
    Dong, Xiaogang
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT IV, 2024, 14490 : 265 - 276
  • [42] A Deep Reinforcement Learning based Mobile Device Task Offloading Algorithm in MEC
    Li, Yang
    Shi, Bing
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 200 - 207
  • [43] Task offloading mechanism based on federated reinforcement learning in mobile edge computing
    Li, Jie
    Yang, Zhiping
    Wang, Xingwei
    Xia, Yichao
    Ni, Shijian
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (02) : 492 - 504
  • [44] Task offloading mechanism based on federated reinforcement learning in mobile edge computing
    Jie Li
    Zhiping Yang
    Xingwei Wang
    Yichao Xia
    Shijian Ni
    Digital Communications and Networks, 2023, 9 (02) : 492 - 504
  • [45] Federated Deep Reinforcement Learning for Energy-Efficient Edge Computing Offloading and Resource Allocation in Industrial Internet
    Li, Xuehua
    Zhang, Jiuchuan
    Pan, Chunyu
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [46] A Deep Reinforcement Learning Based Offloading Game in Edge Computing
    Zhan, Yufeng
    Guo, Song
    Li, Peng
    Zhang, Jiang
    IEEE TRANSACTIONS ON COMPUTERS, 2020, 69 (06) : 883 - 893
  • [47] Computation Offloading in Edge Computing Based on Deep Reinforcement Learning
    Li, MingChu
    Mao, Ning
    Zheng, Xiao
    Gadekallu, Thippa Reddy
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 339 - 353
  • [48] Dynamic Computation Offloading with Deep Reinforcement Learning in Edge Network
    Bai, Yang
    Li, Xiaocui
    Wu, Xinfan
    Zhou, Zhangbing
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [49] DMADRL: A Distributed Multi-agent Deep Reinforcement Learning Algorithm for Cognitive Offloading in Dynamic MEC Networks
    Meng Yi
    Peng Yang
    Miao Du
    Ruochen Ma
    Neural Processing Letters, 2022, 54 : 4341 - 4373
  • [50] DMADRL: A Distributed Multi-agent Deep Reinforcement Learning Algorithm for Cognitive Offloading in Dynamic MEC Networks
    Yi, Meng
    Yang, Peng
    Du, Miao
    Ma, Ruochen
    NEURAL PROCESSING LETTERS, 2022, 54 (05) : 4341 - 4373