Adaptive federated deep reinforcement learning for edge offloading in heterogeneous AGI-MEC networks

被引:0
|
作者
Fan, Chenchen [1 ]
Wang, Qingling [1 ]
机构
[1] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge offloading; Federated learning; Deep reinforcement learning; Air-ground integrated network; RESOURCE-ALLOCATION; DRL; OPTIMIZATION; UAVS;
D O I
10.1007/s10489-025-06486-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To support massive applications of mobile terminals (MTs), the combination of air-ground integrated (AGI) networks and mobile edge computing (MEC) technology has emerged. However, how to intelligently manage MTs to satisfy their performance requirements faces several challenges, such as the high communication burden of collaborative decision-making, real-time changes in environmental information, MT mobility, and heterogeneous performance requirements. To deal with these challenges, we propose an adaptive federated deep deterministic policy gradient (AFDDPG) algorithm tailored to the edge offloading problem. Specifically, an adaptive federated training framework is first constructed to acquire global knowledge by sharing model parameters instead of original data among agents. This framework enables the algorithm to maintain a low communication burden while achieving high solution accuracy. Then, a hybrid reward function is proposed to enhance the exploration intensity in the action space by jointly considering the group interests and the unique features of each agent. Accordingly, the convergence performance of the algorithm in complex environments with multiple constraints is improved. Subsequently, an adaptive local update method is presented, which generates personalized local models through biased model aggregation to cope with the heterogeneous requirements of MTs. Finally, the convergence of the proposed AFDDPG algorithm is analysed, and the effectiveness of the algorithm is demonstrated by extensive simulations.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing
    Qiao, Dewen
    Guo, Songtao
    Liu, Defang
    Long, Saiqin
    Zhou, Pengzhan
    Li, Zhetao
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 4767 - 4782
  • [22] Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks
    Liu, Yi
    Yu, Huimin
    Xie, Shengli
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (11) : 11158 - 11168
  • [23] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [24] Deep Reinforcement Learning-Based Adaptive Computation Offloading and Power Allocation in Vehicular Edge Computing Networks
    Qiu, Bin
    Wang, Yunxiao
    Xiao, Hailin
    Zhang, Zhongshan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 13339 - 13349
  • [25] Federated Deep Learning for Heterogeneous Edge Computing
    Ahmed, Khandaker Mamun
    Imteaj, Ahmed
    Amini, M. Hadi
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1146 - 1152
  • [26] Autonomous MEC Selection in Federated Next-Gen Networks via Deep Reinforcement Learning
    Figetakis, Emanuel
    Refaey, Ahmed
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2045 - 2050
  • [27] Deep Reinforcement Learning based Computation Offloading and Resource Allocation for MEC
    Li, Ji
    Gao, Hui
    Lv, Tiejun
    Lu, Yueming
    2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2018,
  • [28] Decentralized Computation Offloading and Resource Allocation in MEC by Deep Reinforcement Learning
    Liang, Yeteng
    He, Yejun
    Zhong, Xiaoxu
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 244 - 249
  • [29] A Novel Deep Reinforcement Learning Approach for Task Offloading in MEC Systems
    Liu, Xiaowei
    Jiang, Shuwen
    Wu, Yi
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [30] Deep Reinforcement Learning for Task Offloading in Edge Computing
    Xie, Bo
    Cui, Haixia
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 250 - 254