Helmet detection algorithm based on lightweight improved YOLOv8

被引:0
|
作者
Wang, Maoli [1 ]
Qiu, Haitao [1 ]
Wang, Jiarui [1 ]
机构
[1] Qufu Normal Univ, Sch Cyber Sci & Engn, 57 Jingxuan West Rd, Jining 273165, Peoples R China
关键词
Helmet detection; YOLOv8; Partial convolution; Shared features; Channel pruning;
D O I
10.1007/s11760-024-03698-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Object detection technology enables real-time monitoring of helmet-wearing workers, overcoming manual limitations. However, scholarly improvements prioritize accuracy, complicating the model and rendering it unsuitable for embedded devices with limited resources. This paper presents a lightweight model enhancement approach rooted in YOLOv8. The objective is to minimize parameters and computational load while preserving high detection accuracy, aligning with the deployment constraints of embedded devices. We optimized YOLOv8's C2f module with partial convolution, creating a C2f-Light variant with fewer parameters and less computation. Additionally, there was a redesign of the detection head, which reduced both the number of parameters and the computational complexity. Introduction of the Wise-IOU as a replacement for the CIOU, thereby reducing the harm of low-quality samples. Furthermore, we employed a channel pruning algorithm to eliminate redundant channels to reduce the model size and expedite inference. Experiments results show that LS-YOLOv8n significantly reduces parameters and computations compared to YOLOv8n, without losing accuracy. The pruned LS-YOLOv8n model exhibits a 52%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$52\%$$\end{document} improvement in FPS and has a model size of 1.9 MB.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Fasteners quantitative detection and lightweight deployment based on improved YOLOv8
    Bai, Tangbo
    Duan, Jiaming
    Wang, Ying
    Fu, Haochen
    Zong, Hao
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (10):
  • [22] A Lightweight Remote Sensing Small Target Image Detection Algorithm Based on Improved YOLOv8
    Nie, Haijiao
    Pang, Huanli
    Ma, Mingyang
    Zheng, Ruikai
    SENSORS, 2024, 24 (09)
  • [23] Road Object Detection Algorithm Based on Improved YOLOv8
    Peng, Jun
    Li, Chenxi
    Jiang, Aiping
    Mou, Biao
    Lu, Yiyi
    Chen, Wei
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [24] Fabric defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Li, Shujia
    Luo, Dong
    Tan, Gaochao
    TEXTILE RESEARCH JOURNAL, 2025, 95 (3-4) : 235 - 251
  • [25] Blueberry flower detection algorithm based on improved YOLOv8
    Gai, Rongli
    Zhang, Huatian
    Guo, Zhibin
    Kong, Xiangzhou
    Qin, Shan
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 768 - 773
  • [26] UAV Target Detection Algorithm Based on Improved YOLOv8
    Wang, Feng
    Wang, Hongyuan
    Qin, Zhiyong
    Tang, Jiaying
    IEEE ACCESS, 2023, 11 : 116534 - 116544
  • [27] An Improved Liver Disease Detection Based on YOLOv8 Algorithm
    Huang, Junjie
    Li, Caihong
    Yan, Fengjun
    Guo, Yuanchun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 1168 - 1179
  • [28] Improved Road Defect Detection Algorithm Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Computer Engineering and Applications, 2024, 60 (17) : 179 - 190
  • [29] Textile Defect Detection Algorithm Based on the Improved YOLOv8
    Song, Wenfei
    Lang, Du
    Zhang, Jiahui
    Zheng, Meilian
    Li, Xiaoming
    IEEE ACCESS, 2025, 13 : 11217 - 11231
  • [30] Fire and smoke detection algorithm based on improved YOLOv8
    Deng, Li
    Zhou, Jin
    Liu, Quanyi
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2025, 65 (04): : 681 - 689