Helmet detection algorithm based on lightweight improved YOLOv8

被引:0
|
作者
Wang, Maoli [1 ]
Qiu, Haitao [1 ]
Wang, Jiarui [1 ]
机构
[1] Qufu Normal Univ, Sch Cyber Sci & Engn, 57 Jingxuan West Rd, Jining 273165, Peoples R China
关键词
Helmet detection; YOLOv8; Partial convolution; Shared features; Channel pruning;
D O I
10.1007/s11760-024-03698-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Object detection technology enables real-time monitoring of helmet-wearing workers, overcoming manual limitations. However, scholarly improvements prioritize accuracy, complicating the model and rendering it unsuitable for embedded devices with limited resources. This paper presents a lightweight model enhancement approach rooted in YOLOv8. The objective is to minimize parameters and computational load while preserving high detection accuracy, aligning with the deployment constraints of embedded devices. We optimized YOLOv8's C2f module with partial convolution, creating a C2f-Light variant with fewer parameters and less computation. Additionally, there was a redesign of the detection head, which reduced both the number of parameters and the computational complexity. Introduction of the Wise-IOU as a replacement for the CIOU, thereby reducing the harm of low-quality samples. Furthermore, we employed a channel pruning algorithm to eliminate redundant channels to reduce the model size and expedite inference. Experiments results show that LS-YOLOv8n significantly reduces parameters and computations compared to YOLOv8n, without losing accuracy. The pruned LS-YOLOv8n model exhibits a 52%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$52\%$$\end{document} improvement in FPS and has a model size of 1.9 MB.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] YOLOV8-MR: An Improved Lightweight YOLOv8 Algorithm for Tomato Fruit Detection
    Li, Xu
    Cai, Changhan
    Yang, Yue
    Song, Bo
    IEEE ACCESS, 2025, 13 : 48120 - 48131
  • [12] Lightweight outdoor drowning detection based on improved YOLOv8
    Liu, Xiangju
    Shuai, Tao
    Liu, Dezeng
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (02)
  • [13] LWFDD-YOLO: a lightweight defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Xiao, Lei
    Li, Shujia
    Luo, Dong
    TEXTILE RESEARCH JOURNAL, 2024,
  • [14] Ship Detection Based on Improved YOLOv8 Algorithm
    Cao, Xintong
    Shen, Jiayu
    Wang, Tao
    Zhang, Chenxu
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 20 - 23
  • [15] An improved YOLOv8 safety helmet wearing detection network
    Song, Xudong
    Zhang, Tiankai
    Yi, Weiguo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [16] A lightweight algorithm for steel surface defect detection using improved YOLOv8
    Ma, Shuangbao
    Zhao, Xin
    Wan, Li
    Zhang, Yapeng
    Gao, Hongliang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [17] Lightweight Insulator and Defect Detection Method Based on Improved YOLOv8
    Liu, Yanxing
    Li, Xudong
    Qiao, Ruyu
    Chen, Yu
    Han, Xueliang
    Paul, Agyemang
    Wu, Zhefu
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [18] Lightweight Road Damage Detection Method Based on Improved YOLOv8
    Xu, Tiefeng
    Huang, He
    Zhang, Hongmin
    Niu, Xiaofu
    Computer Engineering and Applications, 60 (14): : 175 - 186
  • [19] A Lightweight Tea Pest Detection Algorithm Based on Improved YOLOv8: YOLO-SEM
    Ye, Rong
    Shao, Guoqi
    Li, Tong
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 52 - 61
  • [20] FBS-YOLO: an improved lightweight bearing defect detection algorithm based on YOLOv8
    Li, Junjie
    Cheng, Mingxia
    PHYSICA SCRIPTA, 2025, 100 (02)