Schauder type estimates for degenerate or singular elliptic equations with DMO coefficients

被引:0
|
作者
Dong, Hongjie [1 ]
Jeon, Seongmin [2 ]
Vita, Stefano [3 ]
机构
[1] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
[2] Hanyang Univ, Dept Math Educ, 222 Wangsimni Ro, Seoul 04763, South Korea
[3] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 5, I-27100 Pavia, Italy
基金
芬兰科学院;
关键词
DIVERGENCE FORM; C-1; REGULARITY; SYSTEMS; RATIOS;
D O I
10.1007/s00526-024-02840-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study degenerate or singular elliptic equations in divergence form - div ( x (n) (alpha )A D u ) = div ( x (n) (alpha) g ) in B- 1 boolean AND { x( n) > 0} . When alpha > -1, we establish boundary Schauder type estimates under the conormal boundary condition on the flat boundary, provided that the coefficients satisfy Dini mean oscillation (DMO) type conditions. Additionally, as an application, we derive higher-order boundary Harnack principles for uniformly elliptic equations in divergence form with DMO coefficients.
引用
收藏
页数:42
相关论文
共 50 条
  • [31] Generalized Schauder theory and its application to degenerate/singular parabolic equations
    Kim, Takwon
    Lee, Ki-Ahm
    Yun, Hyungsung
    MATHEMATISCHE ANNALEN, 2024, 390 (04) : 6049 - 6109
  • [32] Schauder Estimates for Nonlocal Equations with Singular Lévy Measures
    Hao, Zimo
    Wang, Zhen
    Wu, Mingyan
    POTENTIAL ANALYSIS, 2024, 61 (01) : 13 - 33
  • [33] A priori estimates for a class of degenerate elliptic equations
    L. H. de Miranda
    M. Montenegro
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 1683 - 1699
  • [34] HOLDER ESTIMATES FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS
    Song, Qiaozhen
    Wang, Lihe
    Li, Dongsheng
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 1202 - 1218
  • [35] Local Gradient Estimates for Degenerate Elliptic Equations
    Luan Hoang
    Truyen Nguyen
    Tuoc Phan
    ADVANCED NONLINEAR STUDIES, 2016, 16 (03) : 479 - 489
  • [36] A priori estimates for a class of degenerate elliptic equations
    de Miranda, L. H.
    Montenegro, M.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (05): : 1683 - 1699
  • [37] Regularity for parabolic equations with singular or degenerate coefficients
    Dong, Hongjie
    Phan, Tuoc
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [38] Regularity for parabolic equations with singular or degenerate coefficients
    Hongjie Dong
    Tuoc Phan
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [39] Schauder estimates for degenerate Monge–Ampère equations and smoothness of the eigenfunctions
    Nam Q. Le
    Ovidiu Savin
    Inventiones mathematicae, 2017, 207 : 389 - 423
  • [40] Lp ESTIMATES FOR DEGENERATE ELLIPTIC SYSTEMS WITH VMO COEFFICIENTS
    Di Fazio, G.
    Fanciullo, M. S.
    Zamboni, P.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (06) : 909 - 917