Schauder type estimates for degenerate or singular elliptic equations with DMO coefficients

被引:0
|
作者
Dong, Hongjie [1 ]
Jeon, Seongmin [2 ]
Vita, Stefano [3 ]
机构
[1] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
[2] Hanyang Univ, Dept Math Educ, 222 Wangsimni Ro, Seoul 04763, South Korea
[3] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 5, I-27100 Pavia, Italy
基金
芬兰科学院;
关键词
DIVERGENCE FORM; C-1; REGULARITY; SYSTEMS; RATIOS;
D O I
10.1007/s00526-024-02840-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study degenerate or singular elliptic equations in divergence form - div ( x (n) (alpha )A D u ) = div ( x (n) (alpha) g ) in B- 1 boolean AND { x( n) > 0} . When alpha > -1, we establish boundary Schauder type estimates under the conormal boundary condition on the flat boundary, provided that the coefficients satisfy Dini mean oscillation (DMO) type conditions. Additionally, as an application, we derive higher-order boundary Harnack principles for uniformly elliptic equations in divergence form with DMO coefficients.
引用
收藏
页数:42
相关论文
共 50 条
  • [21] On a Poincar, type formula for solutions of singular and degenerate elliptic equations
    Farina, Alberto
    Sciunzi, Berardino
    Valdinoci, Enrico
    MANUSCRIPTA MATHEMATICA, 2010, 132 (3-4) : 335 - 342
  • [22] On a Poincaré type formula for solutions of singular and degenerate elliptic equations
    Alberto Farina
    Berardino Sciunzi
    Enrico Valdinoci
    manuscripta mathematica, 2010, 132 : 335 - 342
  • [23] Sharp Schauder estimates for some degenerate Kolmogorov equations
    De Raynal, Paul-Eric Chaudru
    Honore, Igor
    Menozzi, Stephane
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (03) : 989 - 1089
  • [25] Degenerate elliptic equations with singular nonlinearities
    Castorina, Daniele
    Esposito, Pierpaolo
    Sciunzi, Berardino
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (03) : 279 - 306
  • [26] Gradient estimates for weak solutions of linear elliptic systems with singular-degenerate coefficients
    Cao, Dat
    Mengesha, Tadele
    Tuoc Phan
    NONLINEAR DISPERSIVE WAVES AND FLUIDS, 2019, 725 : 13 - 33
  • [27] Harnack's Inequality and Applications of Quasilinear Degenerate Elliptic Equations with Rough and Singular Coefficients
    Niu, Pengcheng
    Wu, Leyun
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (02): : 279 - 312
  • [28] Harnack’s Inequality and Applications of Quasilinear Degenerate Elliptic Equations with Rough and Singular Coefficients
    Pengcheng Niu
    Leyun Wu
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 279 - 312
  • [29] SCHAUDER ESTIMATES FOR A CLASS OF NON-LOCAL ELLIPTIC EQUATIONS
    Dong, Hongjie
    Kim, Doyoon
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2319 - 2347
  • [30] Interior Schauder Estimates for Elliptic Equations Associated with Levy Operators
    Kuehn, Franziska
    POTENTIAL ANALYSIS, 2022, 56 (03) : 459 - 481