On the Symmetry of a Convex Polyhedron in a Translational Point Multilattice

被引:0
|
作者
Shtogrin, M. I. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
关键词
Fedorov group; crystal structure; lattice; net; cut (faceting); symmetry group;
D O I
10.1134/S0081543824020184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In geometric crystallography, there are 32 well-known point crystallographic groups, or A. V. Gadolin's 32 crystal classes, which make up a complete list of symmetry groups of crystal shapes whose internal structure is subordinate to one of the 230 Fedorov groups existing in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R<^>3$$\end{document}. In 2022, the author constructed two point crystal structures located in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R<^>3$$\end{document} whose possible external shapes have the symmetry groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{8\text{h}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{12\text{h}}$$\end{document}, respectively. However, the internal structure of the crystal was not taken into account in the considerations of these groups. The central result of the author's 2022 paper is as follows: if a possible external shape of an ideal crystal has an ordinary rotation of non-crystallographic order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, then either \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=8$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=12$$\end{document} and in this case the external shape is a right prism of finite height. But only after the paper was published did the author notice that the proof of this result was incomplete, although the result itself is correct. The present paper provides a complete proof of this result without relying on the 2022 text.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 50 条
  • [41] ALGORITHM FOR ENUMERATING ALL VERTICES OF A CONVEX POLYHEDRON
    ALTHERR, W
    COMPUTING, 1975, 15 (03) : 181 - 193
  • [42] Algorithm and software for integration over a convex polyhedron
    Korenblit, Mark
    Shmerling, Efraim
    MATHEMATICAL SOFTWARE-ICMS 2006, PROCEEDINGS, 2006, 4151 : 273 - 283
  • [43] EXPECTED NUMBER OF VERTICES OF A RANDOM CONVEX POLYHEDRON
    KELLY, DG
    TOLLE, JW
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1981, 2 (04): : 441 - 451
  • [44] Finding the insphere of a convex polyhedron: an analytical approach
    Sahu, KK
    Lahiri, AK
    PHILOSOPHICAL MAGAZINE, 2004, 84 (12): : 1185 - 1196
  • [45] Translating a convex polyhedron over monotone polyhedra
    Asano, T
    Hernández-Barrera, A
    Nandy, SC
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (03): : 257 - 269
  • [46] METHODS FOR FINDING ALL VERTICES OF A CONVEX POLYHEDRON
    MANAS, M
    EKONOMICKO-MATEMATICKY OBZOR, 1969, (03): : 325 - 342
  • [47] Novel Convex Polyhedron Classifier for Sentiment Analysis
    El Mrabti, Soufiane
    Lazaar, Mohamed
    Al Achhab, Mohammed
    Omara, Hicham
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 241 - 245
  • [48] AN ALGORITHM FOR FINDING THE CHEBYSHEV CENTER OF A CONVEX POLYHEDRON
    BOTKIN, ND
    TUROVABOTKINA, VL
    APPLIED MATHEMATICS AND OPTIMIZATION, 1994, 29 (02): : 211 - 222
  • [49] AN APPROXIMATE METHOD OF CALCULATING THE VOLUME OF A CONVEX POLYHEDRON
    KOZLOV, MK
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1982, 22 (02): : 227 - 233
  • [50] AN EFFICIENT POINT IN POLYHEDRON ALGORITHM
    LANE, J
    MAGEDSON, B
    RARICK, M
    COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1984, 26 (01): : 118 - 125