On the Symmetry of a Convex Polyhedron in a Translational Point Multilattice

被引:0
|
作者
Shtogrin, M. I. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
关键词
Fedorov group; crystal structure; lattice; net; cut (faceting); symmetry group;
D O I
10.1134/S0081543824020184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In geometric crystallography, there are 32 well-known point crystallographic groups, or A. V. Gadolin's 32 crystal classes, which make up a complete list of symmetry groups of crystal shapes whose internal structure is subordinate to one of the 230 Fedorov groups existing in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R<^>3$$\end{document}. In 2022, the author constructed two point crystal structures located in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R<^>3$$\end{document} whose possible external shapes have the symmetry groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{8\text{h}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{12\text{h}}$$\end{document}, respectively. However, the internal structure of the crystal was not taken into account in the considerations of these groups. The central result of the author's 2022 paper is as follows: if a possible external shape of an ideal crystal has an ordinary rotation of non-crystallographic order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, then either \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=8$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=12$$\end{document} and in this case the external shape is a right prism of finite height. But only after the paper was published did the author notice that the proof of this result was incomplete, although the result itself is correct. The present paper provides a complete proof of this result without relying on the 2022 text.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 50 条
  • [31] Symmetry Point Groups and Topological Entropies of Polyatomic Convex Clusters
    Voytekhovsky, Yury L.
    MINERALS: STRUCTURE, PROPERTIES, METHODS OF INVESTIGATION, 2020, : 267 - 276
  • [32] Contributing vertices-based Minkowski sum of a non-convex polyhedron without fold and a convex polyhedron
    Barki, Hichem
    Denis, Florence
    Dupont, Florent
    SMI 2009: IEEE INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, PROCEEDINGS, 2009, : 73 - 80
  • [33] The critical point and related symmetry measures of a planar convex set
    Kaiser, MJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (09) : 79 - 98
  • [34] An Algorithm on Discrimination of Point-set in Polyhedron Based on Three-Dimensional Convex Hull
    Wang, Yongzhi
    Sheng, Yehua
    Zhou, Liangchen
    Guo, Fei
    Hu, Yu
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [35] CONSTRUCTION OF CONVEX AND CONCAVE FUNCTIONS OF PERMUTATION POLYHEDRON
    STOYAN, YG
    YAKOVLEV, SV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1988, (05): : 66 - 68
  • [36] Active Control Method for Smoothing Convex Polyhedron
    Wan, Chaoyan
    Zhao, Wenzhong
    Cao, Jialian
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS I AND II, 2009, : 395 - 398
  • [37] The smallest mono-unstable convex polyhedron with point masses has 8 faces and 11 vertices
    Papp, David
    Regos, Krisztina
    Domokos, Gabor
    Bozoki, Sandor
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 310 (02) : 511 - 517
  • [38] MINIMIZATION OF A CONCAVE FUNCTION ON A BOUNDED CONVEX POLYHEDRON
    BALI, SG
    OPERATIONS RESEARCH, 1975, 23 : B344 - B344
  • [39] Point in a polyhedron : A geometric perspective
    Choudhury, Shouvik Datta
    Bhattacharyya, Arindam
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (05) : 737 - 744
  • [40] PROPERTIES OF CONVEX-FUNCTIONS ON PERMUTABLE POLYHEDRON
    STOYAN, YG
    YAKOVLEV, SV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1988, (03): : 69 - 72