Improved Lower Bound Towards Chen-Chvátal Conjecture

被引:0
|
作者
Huang, Congkai [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
关键词
Metric space; Distance; De Bruijn-Erdos; Finite metric space Partially ordered set;
D O I
10.1007/s00493-025-00137-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that in every metric space where no line contains all the points, there are at least Omega(n2/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n<^>{2/3})$$\end{document} lines. This improves the previous Omega(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\sqrt{n})$$\end{document} lower bound on the number of lines in general metric space, and also improves the previous Omega(n4/7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n<^>{4/7})$$\end{document} lower bound on the number of lines in metric spaces generated by connected graphs.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Chen-Chvátal's conjecture for graphs with restricted girth
    Montejano, Luis Pedro
    QUAESTIONES MATHEMATICAE, 2024, 47 (09) : 1827 - 1850
  • [2] On the Chv?tal-Janson conjecture
    Barabesi, Lucio
    Pratelli, Luca
    Rigo, Pietro
    STATISTICS & PROBABILITY LETTERS, 2023, 194
  • [3] A study on the Poisson, geometric and Pascal distributions motivated by Chvátal's conjecture
    Li, Fu-Bo
    Xu, Kun
    Hu, Ze-Chun
    STATISTICS & PROBABILITY LETTERS, 2023, 200
  • [4] Towards the Chen-Raspaud conjecture
    Lyczek, Katarzyna
    Nazarczuk, Maria
    Rzazewski, Pawel
    DISCRETE MATHEMATICS, 2024, 347 (03)
  • [5] A lower bound in the abc conjecture
    van Frankenhuysen, M
    JOURNAL OF NUMBER THEORY, 2000, 82 (01) : 91 - 95
  • [6] A LOWER BOUND FOR THE GONALITY CONJECTURE
    Castryck, Wouter
    MATHEMATIKA, 2017, 63 (02) : 561 - 563
  • [7] Improved Lower Bound for Frankl's Union-Closed Sets Conjecture
    Alweiss, Ryan
    Huang, Brice
    Sellke, Mark
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03):
  • [8] A new lower bound in the abc conjecture
    Bright, Curtis
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 369 - 378
  • [9] ON GALKIN'S LOWER BOUND CONJECTURE
    Hu, Jianxun
    Ke, Hua-Zhong
    Li, Changzheng
    Su, Zhitong
    ASIAN JOURNAL OF MATHEMATICS, 2024, 28 (05) : 609 - 616
  • [10] A Linear Bound towards the Traceability Conjecture
    van Aardt, Susan A.
    Dunbar, Jean E.
    Frick, Marietjie
    Lichiardopol, Nicolas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04):