A new lower bound in the abc conjecture

被引:0
|
作者
Bright, Curtis [1 ,2 ]
机构
[1] Univ Windsor, Sch Comp Sci, Windsor, ON, Canada
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
关键词
abc conjecture; good abc examples; abc conjecture lower bound;
D O I
10.4153/S0008439523000784
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there exist infinitely many coprime numbers a, b, c with a + b = c and c > rad(abc) exp(6.563 root log c/ log log c). These are the most extremal examples currently known in the abc conjecture, thereby providing a new lower bound on the tightest possible form of the conjecture. Our work builds on that of van Frankenhuysen (J. Number Theory 82(2000), 91-95) who proved the existence of examples satisfying the above bound with the constant 6.068 in place of 6.563. We show that the constant 6.563 may be replaced by 4 root 2 delta/e where delta is a constant such that all unimodular lattices of sufficiently large dimension n contain a nonzero vector with l(1)-norm at most n/delta.
引用
收藏
页码:369 / 378
页数:10
相关论文
共 50 条
  • [1] A lower bound in the abc conjecture
    van Frankenhuysen, M
    JOURNAL OF NUMBER THEORY, 2000, 82 (01) : 91 - 95
  • [2] A LOWER BOUND FOR THE GONALITY CONJECTURE
    Castryck, Wouter
    MATHEMATIKA, 2017, 63 (02) : 561 - 563
  • [3] ON GALKIN'S LOWER BOUND CONJECTURE
    Hu, Jianxun
    Ke, Hua-Zhong
    Li, Changzheng
    Su, Zhitong
    ASIAN JOURNAL OF MATHEMATICS, 2024, 28 (05) : 609 - 616
  • [4] LOWER BOUND THEOREMS AND A GENERALIZED LOWER BOUND CONJECTURE FOR BALANCED SIMPLICIAL COMPLEXES
    Klee, Steven
    Novik, Isabella
    MATHEMATIKA, 2016, 62 (02) : 441 - 477
  • [5] On the generalized lower bound conjecture for polytopes and spheres
    Murai, Satoshi
    Nevo, Eran
    ACTA MATHEMATICA, 2013, 210 (01) : 185 - 202
  • [6] A LOWER-BOUND CONJECTURE FOR CONVEX POLYTOPES
    MCMULLEN, P
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (05): : 781 - &
  • [7] PROOF OF LOWER BOUND CONJECTURE FOR CONVEX POLYTOPES
    BARNETTE, D
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (02) : 349 - 354
  • [8] Neighborly cubical spheres and a cubical lower bound conjecture
    Eric K. Babson
    Louis J. Billera
    Clara S. Chan
    Israel Journal of Mathematics, 1997, 102 : 297 - 315
  • [9] Galkin's lower bound conjecture holds for the Grassmannian
    Evans, La'Tier
    Schneider, Lisa
    Shifler, Ryan M.
    Short, Laura
    Warman, Stephanie
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 857 - 865
  • [10] Neighborly cubical spheres and a cubical lower bound conjecture
    Babson, EK
    Billera, LJ
    Chan, CS
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 102 (1) : 297 - 315