Improved Lower Bound for Frankl's Union-Closed Sets Conjecture

被引:0
|
作者
Alweiss, Ryan [1 ]
Huang, Brice [2 ]
Sellke, Mark [3 ]
机构
[1] Univ Cambridge, Dept Math & Math Stat, Cambridge, England
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[3] Harvard Univ, Dept Stat, Cambridge, MA USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2024年 / 31卷 / 03期
关键词
FAMILIES;
D O I
10.37236/12232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We verify an explicit inequality conjectured in [8], thus proving that for any nonempty union-closed family F subset of 2([n]) , some i is an element of [n] is contained in at least a 3-root 5/2 approximate to 0.38 fraction of the sets in F . One case, an explicit one-variable inequality, is checked by computer calculation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A proof of Frankl’s union-closed sets conjecture for dismantlable lattices
    Vinayak Joshi
    B. N. Waphare
    S. P. Kavishwar
    Algebra universalis, 2016, 76 : 351 - 354
  • [2] A proof of Frankl's union-closed sets conjecture for dismantlable lattices
    Joshi, Vinayak
    Waphare, B. N.
    Kavishwar, S. P.
    ALGEBRA UNIVERSALIS, 2016, 76 (03) : 351 - 354
  • [3] IMPROVED BOUNDS FOR THE UNION-CLOSED SETS CONJECTURE
    SARVATE, DG
    RENAUD, JC
    ARS COMBINATORIA, 1990, 29 : 181 - 185
  • [4] ON THE UNION-CLOSED SETS CONJECTURE
    SARVATE, DG
    RENAUD, JC
    ARS COMBINATORIA, 1989, 27 : 149 - 154
  • [5] On the union-closed sets conjecture
    Hu, Yining
    DISCRETE MATHEMATICS, 2023, 346 (08)
  • [6] Improving the Lower Bound for the Union-closed Sets Conjecture via Conditionally IID Coupling
    Liu, Jingbo
    2024 58TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, CISS, 2024,
  • [7] Note on the union-closed sets conjecture
    Gao, WD
    Yu, YQ
    ARS COMBINATORIA, 1998, 49 : 280 - 288
  • [8] The Journey of the Union-Closed Sets Conjecture
    Henning Bruhn
    Oliver Schaudt
    Graphs and Combinatorics, 2015, 31 : 2043 - 2074
  • [9] The Journey of the Union-Closed Sets Conjecture
    Bruhn, Henning
    Schaudt, Oliver
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2043 - 2074
  • [10] A note on the union-closed sets conjecture
    Roberts, Ian
    Simpson, Jamie
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 47 : 265 - 267