First Passage Percolation, Local Uniqueness for Interlacements and Capacity of Random Walk

被引:0
|
作者
Prevost, Alexis [1 ]
机构
[1] Univ Geneva, Sect Math, 24 Rue Gen Dufour, CH-1211 Geneva, Switzerland
关键词
DISCRETE CYLINDERS; VACANT SET; RANGE; TIME; DISCONNECTION; INEQUALITIES; CLUSTERS;
D O I
10.1007/s00220-024-05195-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of first passage percolation (FPP) for the random interlacements model has been initiated in Andres and Pr & eacute;vost (Ann Appl Probab 34(2):1846-1895), where it is shown that on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>d$$\end{document}, d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, the FPP distance is comparable to the graph distance with high probability. In this article, we give an asymptotically sharp lower bound on this last probability, which additionally holds on a large class of transient graphs with polynomial volume growth and polynomial decay of the Green function. When considering the interlacement set in the low-intensity regime, the previous bound is in fact valid throughout the near-critical phase. In low dimension, we also present two applications of this FPP result: sharp large deviation bounds on local uniqueness of random interlacements, and on the capacity of a random walk in a ball.
引用
收藏
页数:75
相关论文
共 50 条