First Passage Percolation, Local Uniqueness for Interlacements and Capacity of Random Walk

被引:0
|
作者
Prevost, Alexis [1 ]
机构
[1] Univ Geneva, Sect Math, 24 Rue Gen Dufour, CH-1211 Geneva, Switzerland
关键词
DISCRETE CYLINDERS; VACANT SET; RANGE; TIME; DISCONNECTION; INEQUALITIES; CLUSTERS;
D O I
10.1007/s00220-024-05195-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of first passage percolation (FPP) for the random interlacements model has been initiated in Andres and Pr & eacute;vost (Ann Appl Probab 34(2):1846-1895), where it is shown that on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>d$$\end{document}, d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, the FPP distance is comparable to the graph distance with high probability. In this article, we give an asymptotically sharp lower bound on this last probability, which additionally holds on a large class of transient graphs with polynomial volume growth and polynomial decay of the Green function. When considering the interlacement set in the low-intensity regime, the previous bound is in fact valid throughout the near-critical phase. In low dimension, we also present two applications of this FPP result: sharp large deviation bounds on local uniqueness of random interlacements, and on the capacity of a random walk in a ball.
引用
收藏
页数:75
相关论文
共 50 条
  • [21] FIRST PASSAGE TIMES OF A GENERALIZED RANDOM-WALK
    KINNEY, JR
    ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 : 235 - &
  • [22] ON THE UNIQUENESS OF THE INFINITE CLUSTER OF THE VACANT SET OF RANDOM INTERLACEMENTS
    Teixeira, Augusto
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (01): : 454 - 476
  • [23] Local neighbourhoods for first passage percolation on the configuration model
    Dereich, Steffen
    Ortgiese, Marcel
    arXiv, 2017,
  • [24] Diameters in Supercritical Random Graphs Via First Passage Percolation
    Ding, Jian
    Kim, Jeong Han
    Lubetzky, Eyal
    Peres, Yuval
    COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (5-6): : 729 - 751
  • [25] FIRST PASSAGE PERCOLATION ON SPARSE RANDOM GRAPHS WITH BOUNDARY WEIGHTS
    Leskela, Lasse
    Ngo, Hoa
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (02) : 458 - 471
  • [26] First Passage Percolation on the Erdos-Renyi Random Graph
    Bhamidi, Shankar
    Van der Hofstad, Remco
    Hooghiemstra, Gerard
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05): : 683 - 707
  • [27] FIRST PASSAGE PERCOLATION ON RANDOM GRAPHS WITH FINITE MEAN DEGREES
    Bhamidi, Shankar
    van der Hofstad, Remco
    Hooghiemstra, Gerard
    ANNALS OF APPLIED PROBABILITY, 2010, 20 (05): : 1907 - 1965
  • [28] Divergence of non-random fluctuation in First Passage Percolation
    Nakajima, Shuta
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [29] First Passage Time Distribution for Linear Functions of a Random Walk
    Fathi-Vajargah, B.
    Navidi, M.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2018, 53 (04): : 232 - 236
  • [30] On the first passage time of the parabolic boundary by the Markov random walk
    Aliyev, Rovshan Telman
    Rahimov, Fada
    Farhadova, Aynura
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (17) : 6078 - 6087