On 4-general sets in finite projective spaces

被引:0
|
作者
Pavese, Francesco [1 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Orabona 4, I-70125 Bari, Italy
关键词
Finite geometry; Points in general position; Cap; GENERALIZED CAPS; BOUNDS; OVOIDS; SIZES; AG(N;
D O I
10.1007/s10801-025-01383-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 4-general set in PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PG}(n, q)$$\end{document} is a set of points of PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PG}(n, q)$$\end{document} spanning the whole PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PG}(n, q)$$\end{document} and such that no four of them are on a plane. Such a pointset is said to be complete if it is not contained in a larger 4-general set of PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PG}(n, q)$$\end{document}. In this paper, upper and lower bounds for the size of the largest and the smallest complete 4-general set in PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PG}(n, q)$$\end{document}, respectively, are investigated. Complete 4-general sets in PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PG}(n, q)$$\end{document}, q is an element of{3,4}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in \{3, 4\}$$\end{document}, whose size is close to the theoretical upper bound, are provided. Further results are also presented, including a description of the complete 4-general sets in projective spaces of small dimension over small fields and the construction of a transitive 4-general set of size 3(q+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3(q+1)$$\end{document} in PG(5,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PG}(5, q)$$\end{document}, q equivalent to 1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \equiv 1 \pmod {3}$$\end{document}.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] PARTIAL 3-SPACES IN FINITE PROJECTIVE SPACES
    THAS, JA
    DISCRETE MATHEMATICS, 1980, 32 (03) : 299 - 322
  • [42] On Line Colorings of Finite Projective Spaces
    Gabriela Araujo-Pardo
    György Kiss
    Christian Rubio-Montiel
    Adrián Vázquez-Ávila
    Graphs and Combinatorics, 2021, 37 : 891 - 905
  • [43] ON BAER SUBSPACES OF FINITE PROJECTIVE SPACES
    BEUTELSPACHER, A
    MATHEMATISCHE ZEITSCHRIFT, 1983, 184 (03) : 301 - 319
  • [44] The chromatic index of finite projective spaces
    Xu, Lei
    Feng, Tao
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (09) : 432 - 446
  • [45] Open problems in finite projective spaces
    Hirschfeld, J. W. P.
    Thas, J. A.
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 32 : 44 - 81
  • [46] FINITE REGULAR LOCALLY PROJECTIVE SPACES
    DOYEN, J
    HUBAUT, X
    MATHEMATISCHE ZEITSCHRIFT, 1971, 119 (01) : 83 - &
  • [47] Finite defective subsets of projective spaces
    Ballico, Edoardo
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2013, 4 (01): : 113 - 122
  • [48] On Line Colorings of Finite Projective Spaces
    Araujo-Pardo, Gabriela
    Kiss, Gyorgy
    Rubio-Montiel, Christian
    Vazquez-Avila, Adrian
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 891 - 905
  • [49] Finite planar spaces with projective points
    Napolitano, Vito
    Olanda, Domenico
    RICERCHE DI MATEMATICA, 2009, 58 (02) : 263 - 270
  • [50] On smallest covers of finite projective spaces
    Jörg Eisfeld
    Archiv der Mathematik, 1997, 68 : 77 - 80