The chromatic index of finite projective spaces

被引:0
|
作者
Xu, Lei [1 ]
Feng, Tao [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
关键词
chromatic index; parallelism; projective space; resolvable Steiner system; spread;
D O I
10.1002/jcd.21904
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A line coloring of PG(n,q) $\text{PG}(n,q)$, the n $n$-dimensional projective space over GF(q) $(q)$, is an assignment of colors to all lines of PG(n,q) $\text{PG}(n,q)$ so that any two lines with the same color do not intersect. The chromatic index of PG(n,q) $\text{PG}(n,q)$, denoted by & chi;& PRIME;(PG(n,q)) $\chi <^>{\prime} (\text{PG}(n,q))$, is the least number of colors for which a coloring of PG(n,q) $\text{PG}(n,q)$ exists. This paper translates the problem of determining the chromatic index of PG(n,q) $\text{PG}(n,q)$ to the problem of examining the existences of PG(3,q) $\text{PG}(3,q)$ and PG(4,q) $\text{PG}(4,q)$ with certain properties. In particular, it is shown that for any odd integer n $n$ and q & ISIN;{3,4,8,16},& chi;& PRIME;(PG(n,q))=(qn-1)/(q-1) $q\in \{3,4,8,16\},\chi <^>{\prime} (\text{PG}(n,q))=({q}<^>{n}-1)\unicode{x02215}(q-1)$, which implies the existence of a parallelism of PG(n,q) $\text{PG}(n,q)$ for any odd integer n $n$ and q & ISIN;{3,4,8,16} $q\in \{3,4,8,16\}$.
引用
收藏
页码:432 / 446
页数:15
相关论文
共 50 条
  • [1] ON THE CHROMATIC INDEX OF A FINITE PROJECTIVE-SPACE
    BEUTELSPACHER, A
    JUNGNICKEL, D
    VANSTONE, SA
    GEOMETRIAE DEDICATA, 1989, 32 (03) : 313 - 318
  • [2] The Chromatic Index of Projective Triple Systems
    Meszka, Mariusz
    JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (11) : 531 - 540
  • [3] On the balanced upper chromatic number of cyclic projective planes and projective spaces
    Araujo-Pardo, Gabriela
    Kiss, Gyoergy
    Montejano, Amanda
    DISCRETE MATHEMATICS, 2015, 338 (12) : 2562 - 2571
  • [4] Upper chromatic number of finite projective planes
    Bacso, Gabor
    Tuza, Zsolt
    JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (03) : 221 - 230
  • [5] Arcs in finite projective spaces
    Ball, Simeon
    Lavrauw, Michel
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2019, 6 (1-2) : 133 - 172
  • [6] On chromatic indices of finite affine spaces
    Araujo-Pardo, Gabriela
    Kiss, Gyorgy
    Rubio-Montiel, Christian
    Vazquez-Avila, Adrian
    ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (01) : 67 - 79
  • [7] On the balanced upper chromatic number of finite projective planes
    Blazsik, Zoltan L.
    Blokhuis, Aart
    Miklavic, Stefko
    Nagy, Zoltan Lorant
    Szonyi, Tamas
    DISCRETE MATHEMATICS, 2021, 344 (03)
  • [8] The chromatic number of two families of generalized Kneser graphs related to finite generalized quadrangles and finite projective 3-spaces
    Metsch, Klaus
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [9] On smallest covers of finite projective spaces
    Eisfeld, J
    ARCHIV DER MATHEMATIK, 1997, 68 (01) : 77 - 80
  • [10] On multiple caps in finite projective spaces
    Edel, Yves
    Landjev, Ivan
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (2-3) : 163 - 175