The chromatic index of finite projective spaces

被引:0
|
作者
Xu, Lei [1 ]
Feng, Tao [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
关键词
chromatic index; parallelism; projective space; resolvable Steiner system; spread;
D O I
10.1002/jcd.21904
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A line coloring of PG(n,q) $\text{PG}(n,q)$, the n $n$-dimensional projective space over GF(q) $(q)$, is an assignment of colors to all lines of PG(n,q) $\text{PG}(n,q)$ so that any two lines with the same color do not intersect. The chromatic index of PG(n,q) $\text{PG}(n,q)$, denoted by & chi;& PRIME;(PG(n,q)) $\chi <^>{\prime} (\text{PG}(n,q))$, is the least number of colors for which a coloring of PG(n,q) $\text{PG}(n,q)$ exists. This paper translates the problem of determining the chromatic index of PG(n,q) $\text{PG}(n,q)$ to the problem of examining the existences of PG(3,q) $\text{PG}(3,q)$ and PG(4,q) $\text{PG}(4,q)$ with certain properties. In particular, it is shown that for any odd integer n $n$ and q & ISIN;{3,4,8,16},& chi;& PRIME;(PG(n,q))=(qn-1)/(q-1) $q\in \{3,4,8,16\},\chi <^>{\prime} (\text{PG}(n,q))=({q}<^>{n}-1)\unicode{x02215}(q-1)$, which implies the existence of a parallelism of PG(n,q) $\text{PG}(n,q)$ for any odd integer n $n$ and q & ISIN;{3,4,8,16} $q\in \{3,4,8,16\}$.
引用
收藏
页码:432 / 446
页数:15
相关论文
共 50 条
  • [21] ON BAER SUBSPACES OF FINITE PROJECTIVE SPACES
    BEUTELSPACHER, A
    MATHEMATISCHE ZEITSCHRIFT, 1983, 184 (03) : 301 - 319
  • [22] Open problems in finite projective spaces
    Hirschfeld, J. W. P.
    Thas, J. A.
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 32 : 44 - 81
  • [23] FINITE REGULAR LOCALLY PROJECTIVE SPACES
    DOYEN, J
    HUBAUT, X
    MATHEMATISCHE ZEITSCHRIFT, 1971, 119 (01) : 83 - &
  • [24] Linear sets in finite projective spaces
    Polverino, Olga
    DISCRETE MATHEMATICS, 2010, 310 (22) : 3096 - 3107
  • [25] Finite defective subsets of projective spaces
    Ballico, Edoardo
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2013, 4 (01): : 113 - 122
  • [26] On Line Colorings of Finite Projective Spaces
    Araujo-Pardo, Gabriela
    Kiss, Gyorgy
    Rubio-Montiel, Christian
    Vazquez-Avila, Adrian
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 891 - 905
  • [27] Finite planar spaces with projective points
    Napolitano, Vito
    Olanda, Domenico
    RICERCHE DI MATEMATICA, 2009, 58 (02) : 263 - 270
  • [28] On smallest covers of finite projective spaces
    Jörg Eisfeld
    Archiv der Mathematik, 1997, 68 : 77 - 80
  • [29] COLLINEATION GROUPS OF FINITE PROJECTIVE SPACES
    PERIN, D
    MATHEMATISCHE ZEITSCHRIFT, 1972, 126 (02) : 135 - &
  • [30] Lax embeddings of polar spaces in finite projective spaces
    Thas, JA
    Van Maldeghem, H
    FORUM MATHEMATICUM, 1999, 11 (03) : 349 - 367