Loop, cuspon, and soliton solutions of a multicomponent discrete complex short-pulse equation

被引:0
|
作者
Inam, A. [1 ]
ul Hassan, M. [1 ]
机构
[1] Univ Punjab, Dept Phys, Lahore, Pakistan
关键词
discrete integrable systems; Darboux transformation; discrete complex short-pulse equation; loop solutions; bright and dark soliton solutions; cuspon solutions; NONLINEAR SCHRODINGER-EQUATION; INVERSE SCATTERING TRANSFORM; PARTIAL DIFFERENCE-EQUATIONS; INTEGRABLE DISCRETE; OPTICAL PULSES; WAVE SOLUTIONS; PROPAGATION; DYNAMICS; DISCRETIZATIONS; MULTISOLITON;
D O I
10.1134/S0040577925020047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an integrable discretization of a multicomponent discrete complex short-pulse (dCSP) equation in terms of a Lax pair representation and a Darboux transformation (DT). The Lax pair representation is explored using block matrices by extending the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times2$$\end{document} Lax matrices to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>L\times2<^>L$$\end{document} Lax matrices. The DT on the matrix solutions is studied and is used to generate solutions of the multicomponent dCSP equation by using the properties of quasideterminants. By expanding the quasideterminants, we then show the soliton solutions to be expressed as ratios of ordinary determinants. Further, an appropriate continuum limit is applied to obtain multisoliton solutions of the continuous complex short-pulse equation.
引用
收藏
页码:228 / 251
页数:24
相关论文
共 50 条
  • [31] Multiloop soliton and multibreather solutions of the short pulse model equation
    Matsuno, Yoshimasa
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (08)
  • [32] Discontinuous solutions for the short-pulse master mode-locking equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    AIMS MATHEMATICS, 2019, 4 (03): : 437 - 462
  • [33] The short-pulse equation and associated constraints
    Horikis, Theodoros P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (44)
  • [34] Rigorous justification of the short-pulse equation
    Pelinovsky, Dmitry
    Schneider, Guido
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 1277 - 1294
  • [35] Wave breaking in the short-pulse equation
    Liu, Yue
    Pelinovsky, Dmitry
    Sakovich, Anton
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, 6 (04) : 291 - 310
  • [36] Rigorous justification of the short-pulse equation
    Dmitry Pelinovsky
    Guido Schneider
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 1277 - 1294
  • [37] SHORT-PULSE ROGOWSKI LOOP WITH METAL CORE
    GERASIMOV, AI
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1991, 34 (01) : 151 - 153
  • [38] Symmetry broken and symmetry preserving multi-soliton solutions for nonlocal complex short pulse equation
    Sarfraz, H.
    Saleem, U.
    CHAOS SOLITONS & FRACTALS, 2020, 130
  • [39] Asymptotic Analysis of Soliton Solutions for the Coupled Modified Complex Short Pulse Equation by Binary Darboux Transformation
    Sun, Hong-Qian
    Shen, Shou-Feng
    Zhu, Zuo-Nong
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (03)
  • [40] Two-soliton solutions of the complex short pulse equation via Riemann-Hilbert approach
    Zhang, Wei-Guo
    Yao, Qian
    Bo, Ge-Qiang
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 263 - 270