Loop, cuspon, and soliton solutions of a multicomponent discrete complex short-pulse equation

被引:0
|
作者
Inam, A. [1 ]
ul Hassan, M. [1 ]
机构
[1] Univ Punjab, Dept Phys, Lahore, Pakistan
关键词
discrete integrable systems; Darboux transformation; discrete complex short-pulse equation; loop solutions; bright and dark soliton solutions; cuspon solutions; NONLINEAR SCHRODINGER-EQUATION; INVERSE SCATTERING TRANSFORM; PARTIAL DIFFERENCE-EQUATIONS; INTEGRABLE DISCRETE; OPTICAL PULSES; WAVE SOLUTIONS; PROPAGATION; DYNAMICS; DISCRETIZATIONS; MULTISOLITON;
D O I
10.1134/S0040577925020047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an integrable discretization of a multicomponent discrete complex short-pulse (dCSP) equation in terms of a Lax pair representation and a Darboux transformation (DT). The Lax pair representation is explored using block matrices by extending the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times2$$\end{document} Lax matrices to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>L\times2<^>L$$\end{document} Lax matrices. The DT on the matrix solutions is studied and is used to generate solutions of the multicomponent dCSP equation by using the properties of quasideterminants. By expanding the quasideterminants, we then show the soliton solutions to be expressed as ratios of ordinary determinants. Further, an appropriate continuum limit is applied to obtain multisoliton solutions of the continuous complex short-pulse equation.
引用
收藏
页码:228 / 251
页数:24
相关论文
共 50 条
  • [21] Large time asymptotics of solutions to the short-pulse equation
    Mamoru Okamoto
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [22] Large time asymptotics of solutions to the short-pulse equation
    Okamoto, Mamoru
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (04):
  • [23] Spectral stability of elliptic solutions to the short-pulse equation
    Sun, Wen-Rong
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 456
  • [24] On soliton solutions of multi-component semi-discrete short pulse equation
    Riaz, H. Wajahat A.
    ul Hassan, Mahmood
    JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (02):
  • [25] Reply to "Comment on 'Defocusing complex short-pulse equation and its multi-dark-soliton solution'"
    Feng, Bao-Feng
    Ling, Liming
    Zhu, Zuonong
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [26] The periodic traveling-wave solutions of the short-pulse equation
    Xie, Shaolong
    Hong, Xiaochun
    Gao, Bin
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2542 - 2548
  • [27] RIEMANN-HILBERT PROBLEMS AND SOLITON SOLUTIONS FOR THE COMPLEX MODIFIED SHORT PULSE EQUATION
    Zhou, Xuan
    Fan, Engui
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (02) : 145 - 159
  • [28] Loop dynamics of a fully discrete short pulse equation
    Sarfraz, H.
    Saleem, U.
    Hanif, Y.
    MODERN PHYSICS LETTERS A, 2023, 38 (16-17)
  • [29] Continuous limit and location-manageable discrete loop rogue wave solutions for the semi-discrete complex short pulse equation
    Lin, Zhe
    Wen, Xiao-Yong
    RESULTS IN PHYSICS, 2022, 39
  • [30] Inverse scattering transform for the complex coupled short-pulse equation
    Gkogkou, Aikaterini
    Prinari, Barbara
    Feng, Bao-Feng
    Trubatch, A. David
    STUDIES IN APPLIED MATHEMATICS, 2022, 148 (02) : 918 - 963