Loop, cuspon, and soliton solutions of a multicomponent discrete complex short-pulse equation

被引:0
|
作者
Inam, A. [1 ]
ul Hassan, M. [1 ]
机构
[1] Univ Punjab, Dept Phys, Lahore, Pakistan
关键词
discrete integrable systems; Darboux transformation; discrete complex short-pulse equation; loop solutions; bright and dark soliton solutions; cuspon solutions; NONLINEAR SCHRODINGER-EQUATION; INVERSE SCATTERING TRANSFORM; PARTIAL DIFFERENCE-EQUATIONS; INTEGRABLE DISCRETE; OPTICAL PULSES; WAVE SOLUTIONS; PROPAGATION; DYNAMICS; DISCRETIZATIONS; MULTISOLITON;
D O I
10.1134/S0040577925020047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an integrable discretization of a multicomponent discrete complex short-pulse (dCSP) equation in terms of a Lax pair representation and a Darboux transformation (DT). The Lax pair representation is explored using block matrices by extending the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times2$$\end{document} Lax matrices to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>L\times2<^>L$$\end{document} Lax matrices. The DT on the matrix solutions is studied and is used to generate solutions of the multicomponent dCSP equation by using the properties of quasideterminants. By expanding the quasideterminants, we then show the soliton solutions to be expressed as ratios of ordinary determinants. Further, an appropriate continuum limit is applied to obtain multisoliton solutions of the continuous complex short-pulse equation.
引用
收藏
页码:228 / 251
页数:24
相关论文
共 50 条
  • [1] A note on loop-soliton solutions of the short-pulse equation
    Parkes, E. J.
    PHYSICS LETTERS A, 2010, 374 (42) : 4321 - 4323
  • [2] A focusing and defocusing semi-discrete complex short-pulse equation and its various soliton solutions
    Feng, Bao-Feng
    Ling, Liming
    Zhu, Zuonong
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2247):
  • [3] Soliton resolution for the short-pulse equation
    Yang, Yiling
    Fan, Engui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 644 - 689
  • [4] Darboux transformation and soliton solutions of the spatial discrete coupled complex short pulse equation
    Sun, Hong-Qian
    Zhu, Zuo-Nong
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 436
  • [5] Dressing Method for the Multicomponent Short-Pulse Equation
    H. Wajahat A. Riaz
    M. Hassan
    Theoretical and Mathematical Physics, 2019, 199 : 709 - 718
  • [6] Dressing Method for the Multicomponent Short-Pulse Equation
    Riaz, H. Wajahat A.
    Hassan, M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 199 (02) : 709 - 718
  • [7] On the double-pole solutions of the complex short-pulse equation
    Xu, Jian
    Guo, Ning
    Li, Hongyu
    Tu, Youzhi
    MODERN PHYSICS LETTERS B, 2021, 35 (07):
  • [8] Multi-cuspon solutions of a generalized short pulse equation
    Li, Nianhua
    Qi, Huihui
    WAVE MOTION, 2022, 112
  • [9] Darboux transformation for the defocusing modified complex short-pulse equation and its multi-dark-soliton solutions
    Hui Mao
    Chunjing Mo
    Weicai Pang
    Theoretical and Mathematical Physics, 2022, 212 : 1211 - 1221
  • [10] Darboux transformation for the defocusing modified complex short-pulse equation and its multi-dark-soliton solutions
    Mao, Hui
    Mo, Chunjing
    Pang, Weicai
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 212 (03) : 1211 - 1221