Performance optimization of new generation R290 and R1234yf refrigerants: A response surface methodology approach

被引:0
|
作者
Pektezel, Oguzhan [1 ]
Ozdemir, Safiye Nur [2 ]
机构
[1] Univ Balikesir, Dept Mech Engn, TR-10145 Balikesir, Turkiye
[2] Univ Sakarya, Dept Mech Engn, TR-54050 Adapazari, Turkiye
关键词
Experimental refrigeration system; Central composite design; Response surface methodology; Desirability function approach; Optimization process; MULTIOBJECTIVE OPTIMIZATION; ENERGY PERFORMANCE; GWP MIXTURES; SYSTEM; R134A; REPLACEMENT; IMPROVEMENT; R404A; ALTERNATIVES; R513A;
D O I
10.1016/j.applthermaleng.2025.125927
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study aims to perform the parametric optimization of the R290 and R1234yf refrigerants in vapor compression refrigeration systems by employing the Response surface methodology (RSM) approach to obtain the best operating conditions. The input factors, including evaporator and condenser temperatures, are first determined, ranging from -12 to -4 degrees C and 30 to 40 degrees C, respectively. The objective functions are also identified, including compressor discharge temperature (Tdis), refrigerant mass flow rate (mref), compressor power consumption (Pcomp), and coefficient of performance (COP). Then, the central composite design (CCD) was performed to set out the experimental investigations. Response surface methodology and analysis of variance were utilized to detect the optimal levels and analyze the individual and combined interaction between each pair of input factors. The novelty of this study is in applying the RSM technique to develop second-order regression models and utilizing the desirability function approach for optimizing the refrigeration system. The deviations between the predicted and experimental values for the compressor discharge temperature, refrigerant mass flow rate, compressor power consumption, and COP are 0.256 %, 0.292 %, 0.724 %, and 0.169 %, respectively, representing that this method efficiently optimizes the performance of the R290 refrigerant. Similarly, the deviations between the predicted and experimental values for R1234yf are as follows: 0.272 %, 0.526 %, 0.980 %, and 1.069 %. From our knowledge, there have been very few optimization studies on the thermodynamic performance of refrigerants using the RSM tool, which reduces experimental costs and saves time.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] An experimental comparative analysis and machine learning prediction on the evaporation characteristics of R1234yf and R290/R13I1 in a plate heat exchanger
    Prabakaran, Rajendran
    Dhamodharan, Palanisamy
    Mohanraj, Thangamuthu
    Kim, Sung Chul
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [32] Research on Adsorption and Energy Storage of Refrigerants R1234yf and R32 in MOF-74
    Zhang, Cheng
    Yan, Xiao
    Peng, Shinian
    Yuan, Dewen
    Liu, Wenxing
    Hedongli Gongcheng/Nuclear Power Engineering, 2022, 43 (03): : 1 - 6
  • [33] R1234yf and R1234ze(E) as low-GWP refrigerants for residential heat pump water heaters
    Nawaz, Kashif
    Shen, Bo
    Elatar, Ahmed
    Baxter, Van
    Abdelaziz, Omar
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 82 : 348 - 365
  • [34] Retrofitting an air-conditioning device to utilize R1234yf and R1234ze(E) refrigerants as alternatives to R22
    Oruc, Vedat
    Devecioglu, Atilla G.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (04)
  • [35] A regressive model for dynamic impulsive instabilities during the condensation of R134a, R1234ze(E) and R1234yf refrigerants
    Kuczyński, Waldemar
    Charun, Henryk
    Piątkowski, Piotr
    Balasz, Blażej
    Chliszcz, Katarzyna
    Kuczyński, Waldemar (waldemar.kuczynski@tu.koszalin.pl), 1600, Elsevier Ltd (169):
  • [36] Experimental and Numerical Studies on an Automobile Air Conditioning System With the Refrigerants R134a, R1234yf, and R1234ze(E)
    Gurudatt, H. M.
    Narasimham, G. S. V. L.
    Sadashive Gowda, B.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2024, 16 (01)
  • [37] Retrofitting an air-conditioning device to utilize R1234yf and R1234ze(E) refrigerants as alternatives to R22
    Vedat Oruç
    Atilla G. Devecioğlu
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40
  • [38] Performance of Automotive Air Conditioning System with R134a and R1234yf
    Kuwar, Yogendra Vasantrao
    Narasimham, G. S. V. L.
    INTERNATIONAL JOURNAL OF AIR-CONDITIONING AND REFRIGERATION, 2020, 28 (02)
  • [39] A regressive model for dynamic impulsive instabilities during the condensation of R134a, R1234ze(E) and R1234yf refrigerants
    Kuczynski, Waldemar
    Charun, Henryk
    Piatkowski, Piotr
    Balasz, Blazej
    Chliszcz, Katarzyna
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 169
  • [40] Comparative analysis of R290 and R1234yf cooling performance in offset strip-fin plate heat exchanger for electric-vehicle battery thermal management
    Dhamodharan, Palanisamy
    Salman, Mohammad
    Prabakaran, Rajendran
    Kim, Sung Chul
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 157