Completely Positive and Isometric Maps on Schatten-Class Operators

被引:0
|
作者
Li, Yuan [1 ]
Wang, Shuaijie [2 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710062, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Completely positive maps; isometric maps; spectra; Schatten-class operators; FIXED-POINTS;
D O I
10.1007/s00025-024-02338-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let & sum;i=1 infinity AiAi & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=1}<^>{\infty }A_iA_i<^>*$$\end{document} and & sum;i=1 infinity Ai & lowast;Ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=1}<^>{\infty }A_i<^>*A_i$$\end{document} converge in the strong operator topology. We study the map Phi A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}$$\end{document} defined on the Banach space of all bounded linear operators B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B(H)}}$$\end{document} by Phi A(X)=& sum;i=1 infinity AiXAi & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}(X)=\sum _{i=1}<^>{\infty }A_iXA_i<^>*$$\end{document} and its restriction Phi A|Sp(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}}$$\end{document} to the Banach space of all Schatten p-class operators Sp(H).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}_p\mathcal {(H)}}.$$\end{document} We first consider the relationship between the spectra and the norms of Phi A|Sp(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}}$$\end{document} and Phi A dagger|Sp(H),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi <^>\dag _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}},$$\end{document} where Phi A dagger\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi <^>\dag _{\mathcal {A}}$$\end{document} is the dual of Phi A.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}. $$\end{document} Moreover, we present the structure and some equivalent conditions under which Phi A|Sp(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}}$$\end{document} is an isometry.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] THE PURIFICATION OF COMPLETELY POSITIVE MAPS
    DEMOEN, B
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (NOV) : 545 - 548
  • [42] DILATIONS OF COMPLETELY POSITIVE MAPS
    DAVIES, EB
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 17 (APR): : 330 - 338
  • [43] Maps Completely Preserving the Quadratic Operators
    Hosseinzadeh, Roja
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (02): : 123 - 132
  • [44] Roots of completely positive maps
    Bhat, B. V. Rajarama
    Hillier, Robin
    Mallick, Nirupama
    Kumar, Vijaya U.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 587 : 143 - 165
  • [45] Nilpotent completely positive maps
    Bhat, B. V. Rajarama
    Mallick, Nirupama
    POSITIVITY, 2014, 18 (03) : 567 - 577
  • [46] Covariant completely positive maps
    Xu, TZ
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (08): : 1131 - 1140
  • [47] Interpolation by completely positive maps
    Li, Chi-Kwong
    Poon, Yiu-Tung
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (10): : 1159 - 1170
  • [48] PERSPECTIVES AND COMPLETELY POSITIVE MAPS
    Hansen, Frank
    ANNALS OF FUNCTIONAL ANALYSIS, 2017, 8 (02): : 168 - 176
  • [49] Contact Points and Schatten Class of Composition Operators
    Bendaoud, Z.
    Korrichi, F.
    Merghni, L.
    Yagoub, A.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (04): : 651 - 661
  • [50] Necessary conditions for Schatten class localization operators
    Cordero, E
    Gröcheng, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) : 3573 - 3579