Completely Positive and Isometric Maps on Schatten-Class Operators

被引:0
|
作者
Li, Yuan [1 ]
Wang, Shuaijie [2 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710062, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Completely positive maps; isometric maps; spectra; Schatten-class operators; FIXED-POINTS;
D O I
10.1007/s00025-024-02338-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let & sum;i=1 infinity AiAi & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=1}<^>{\infty }A_iA_i<^>*$$\end{document} and & sum;i=1 infinity Ai & lowast;Ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=1}<^>{\infty }A_i<^>*A_i$$\end{document} converge in the strong operator topology. We study the map Phi A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}$$\end{document} defined on the Banach space of all bounded linear operators B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B(H)}}$$\end{document} by Phi A(X)=& sum;i=1 infinity AiXAi & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}(X)=\sum _{i=1}<^>{\infty }A_iXA_i<^>*$$\end{document} and its restriction Phi A|Sp(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}}$$\end{document} to the Banach space of all Schatten p-class operators Sp(H).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}_p\mathcal {(H)}}.$$\end{document} We first consider the relationship between the spectra and the norms of Phi A|Sp(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}}$$\end{document} and Phi A dagger|Sp(H),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi <^>\dag _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}},$$\end{document} where Phi A dagger\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi <^>\dag _{\mathcal {A}}$$\end{document} is the dual of Phi A.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}. $$\end{document} Moreover, we present the structure and some equivalent conditions under which Phi A|Sp(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}}$$\end{document} is an isometry.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Schatten class Fourier integral operators
    Bishop, Shannon
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 31 (02) : 205 - 217
  • [33] COMPLETE ORDER STRUCTURES FOR COMPLETELY BOUNDED MAPS INVOLVING TRACE CLASS OPERATORS
    Li, Yuan
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (04): : 1165 - 1185
  • [34] MAPS COMPLETELY PRESERVING FIXED POINTS AND MAPS COMPLETELY PRESERVING KERNEL OF OPERATORS
    Hosseinzadeh, R.
    Sharifi, I.
    Taghavi, A.
    ANALYSIS MATHEMATICA, 2018, 44 (04) : 451 - 459
  • [35] Maps Completely Preserving Fixed Points and Maps Completely Preserving Kernel of Operators
    R. Hosseinzadeh
    I. Sharifi
    A. Taghavi
    Analysis Mathematica, 2018, 44 : 451 - 459
  • [36] On Norms of Completely Positive Maps
    Szarek, Stanislaw J.
    TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 : 535 - 538
  • [37] Nilpotent completely positive maps
    B. V. Rajarama Bhat
    Nirupama Mallick
    Positivity, 2014, 18 : 567 - 577
  • [38] Decomposition of completely positive maps
    Paul, M
    MATHEMATISCHE NACHRICHTEN, 1997, 185 : 227 - 237
  • [39] Contact Points and Schatten Class of Composition Operators
    Z. Bendaoud
    F. Korrichi
    L. Merghni
    A. Yagoub
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 651 - 661
  • [40] COMPOSITION OPERATORS BELONGING TO SCHATTEN CLASS Sp
    Yuan, Cheng
    Zhou, Ze-Hua
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (03) : 465 - 472