Completely Positive and Isometric Maps on Schatten-Class Operators

被引:0
|
作者
Li, Yuan [1 ]
Wang, Shuaijie [2 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710062, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Completely positive maps; isometric maps; spectra; Schatten-class operators; FIXED-POINTS;
D O I
10.1007/s00025-024-02338-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let & sum;i=1 infinity AiAi & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=1}<^>{\infty }A_iA_i<^>*$$\end{document} and & sum;i=1 infinity Ai & lowast;Ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=1}<^>{\infty }A_i<^>*A_i$$\end{document} converge in the strong operator topology. We study the map Phi A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}$$\end{document} defined on the Banach space of all bounded linear operators B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B(H)}}$$\end{document} by Phi A(X)=& sum;i=1 infinity AiXAi & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}(X)=\sum _{i=1}<^>{\infty }A_iXA_i<^>*$$\end{document} and its restriction Phi A|Sp(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}}$$\end{document} to the Banach space of all Schatten p-class operators Sp(H).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}_p\mathcal {(H)}}.$$\end{document} We first consider the relationship between the spectra and the norms of Phi A|Sp(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}}$$\end{document} and Phi A dagger|Sp(H),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi <^>\dag _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}},$$\end{document} where Phi A dagger\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi <^>\dag _{\mathcal {A}}$$\end{document} is the dual of Phi A.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}. $$\end{document} Moreover, we present the structure and some equivalent conditions under which Phi A|Sp(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\mathcal {A}}|_{\mathcal {S}_p\mathcal {(H)}}$$\end{document} is an isometry.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] SCHATTEN-CLASS OPERATORS AND FRAMES
    Koo, Yoo Young
    Lim, Jae Kun
    QUAESTIONES MATHEMATICAE, 2011, 34 (02) : 203 - 211
  • [2] On Schatten-class perturbations of Toeplitz operators
    Didas, Michael
    Eschmeier, Joerg
    Schillo, Dominik
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (06) : 2442 - 2462
  • [3] SCHATTEN-CLASS TRUNCATED TOEPLITZ OPERATORS
    Lopatto, Patrick
    Rochberg, Richard
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (02) : 637 - 649
  • [4] On a proposed characterization of Schatten-class composition operators
    Xia, JB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (08) : 2505 - 2514
  • [5] SCHATTEN-CLASS GENERALIZED VOLTERRA COMPANION INTEGRAL OPERATORS
    Mengestie, Tesfa
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (02): : 267 - 280
  • [6] Boundedness, Compactness and Schatten-class Membership of Weighted Composition Operators
    Gallardo-Gutierrez, E. A.
    Kumar, R.
    Partington, J. R.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (04) : 467 - 479
  • [8] VON NEUMANN TYPE TRACE INEQUALITIES FOR SCHATTEN-CLASS OPERATORS
    Dirr, Gunther
    vom Ende, Frederik
    JOURNAL OF OPERATOR THEORY, 2020, 84 (02) : 323 - 338
  • [9] Boundedness, Compactness and Schatten-class Membership of Weighted Composition Operators
    E. A. Gallardo-Gutiérrez
    R. Kumar
    J. R. Partington
    Integral Equations and Operator Theory, 2010, 67 : 467 - 479
  • [10] DECOMPOSITIONS OF COMPLETELY BOUNDED MAPS INTO COMPLETELY POSITIVE MAPS INVOLVING TRACE CLASS OPERATORS
    Li, Yuan
    Cui, Mengqian
    Wu, Jiao
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (01): : 16 - 28